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Learning 3D Human Shape and Pose from
Dense Body Parts

Hongwen Zhang, Jie Cao, Guo Lu, Wanli Ouyang, Senior Member, IEEE, and Zhenan Sun, Senior
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Abstract—Reconstructing 3D human shape and pose from monocular images is challenging despite the promising results achieved by
the most recent learning-based methods. The commonly occurred misalignment comes from the facts that the mapping from images to
the model space is highly non-linear and the rotation-based pose representation of body models is prone to result in the drift of joint
positions. In this work, we investigate learning 3D human shape and pose from dense correspondences of body parts and propose a
Decompose-and-aggregate Network (DaNet) to address these issues. DaNet adopts the dense correspondence maps, which densely
build a bridge between 2D pixels and 3D vertices, as intermediate representations to facilitate the learning of 2D-to-3D mapping. The
prediction modules of DaNet are decomposed into one global stream and multiple local streams to enable global and fine-grained
perceptions for the shape and pose predictions, respectively. Messages from local streams are further aggregated to enhance the
robust prediction of the rotation-based poses, where a position-aided rotation feature refinement strategy is proposed to exploit spatial
relationships between body joints. Moreover, a Part-based Dropout (PartDrop) strategy is introduced to drop out dense information
from intermediate representations during training, encouraging the network to focus on more complementary body parts as well as
neighboring position features. The efficacy of the proposed method is validated on both indoor and real-world datasets including
Human3.6M, UP3D, COCO, and 3DPW, showing that our method could significantly improve the reconstruction performance in
comparison with previous state-of-the-art methods. Our code is publicly available at https://hongwenzhang.github.io/dense2mesh.

Index Terms—3D human shape and pose estimation, decompose-and-aggregate network, position-aided rotation feature refinement,
part-based dropout.
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1 INTRODUCTION

R ECONSTRUCTING human shape and pose from a
monocular image is an appealing yet challenging task,

which typically involves the prediction of the camera and
parameters of a statistical body model (e.g. the most com-
monly used SMPL [1] model). Fig. 1(a) shows an example
of the reconstructed result. The challenges of this task come
from the fundamental depth ambiguity, the complexity and
flexibility of human bodies, and variations in clothing and
viewpoint, etc. Classic optimization-based approaches [2],
[3] fit the SMPL model to 2D evidence such as 2D body joints
or silhouettes in images, which involve complex non-linear
optimization and iterative refinement. Recently, regression-
based approaches [4], [5], [6], [7] integrate the SMPL model
within neural networks and predict model parameters di-
rectly in an end-to-end manner.

Though great progress has been made, the direct pre-
diction of the body model from the image space is still
complex and difficult even for deep neural networks. In
this work, we propose to adopt IUV maps as intermediate
representations to facilitate the learning of the mapping
from images to models. As depicted in Fig. 1(b), compared
with other 2D representations [4], [6], [7], the IUV map
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Fig. 1. Illustration of our main ideas. (a) A human image with a para-
metric body model. (b) Comparison of the raw RGB image, silhouette,
segmentation, and IUV map. (c) Local visual cues are crucial for the
perception of joint rotations. (d) Our DaNet learns 3D human shape
and pose from IUV maps with decomposed perception, aggregated
refinement, and part-based dropout strategies.

could provide more rich information, because it encodes
the dense correspondence between foreground pixels on 2D
images and vertices on 3D meshes. Such a dense semantic
map not only contains essential information for shape and
pose estimation from RGB images, but also eliminates the
interference of unrelated factors such as appearance, cloth-
ing, and illumination variations.

The representation of 3D body model [1], [8] can be
factorized into the shape and pose components, depict-
ing the model at different scales. The body shape gives
an identity-dependent description about the model, while
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the body pose provides more detailed descriptions about
the rotation of each body joint. Previous regression-based
methods [5], [7] typically predict them simultaneously using
global information from the last layer of the neural network.
We observe that the detailed pose of body joints should be
captured by local visual cues instead of global information.
As shown in Fig. 1(c), we can estimate the rotations of those
visible body joints only based on local visual cues, while the
information from other body joints and background regions
would be irrelevant.

For the rotation-based pose representation of commonly
used body models [1], [8], small rotation errors accumulated
along the kinematic chain could lead to large drift of po-
sition at the leaf joint. Moreover, the rotation estimation
is error-prone for those occluded body joints since their
perceptions are less reliable under occlusions. Hence, it is
crucial to utilize information from visible body joints and
the prior about the structure of human bodies. As shown
in previous work [9], [10], the structural information at the
feature level is helpful for more robust and accurate pose
estimation. However, it is non-trivial to apply these feature
refinement methods to our case due to the weak correlation
between rotation-based poses of different joints. For in-
stance, the shoulder, elbow, and wrist are three consecutive
body joints, and one can hardly infer the relative rotation
of wrist w.r.t. the elbow given the relative rotation of elbow
w.r.t. the shoulder. On the other hand, we observe that the
3D locations of body joints have stronger correlations than
the rotation of body joints. For instance, the positions of
shoulder, elbow, and wrist are strongly constrained by the
length of the arm.

Based on the observations above, we propose a
Decompose-and-aggregate Network (DaNet) to learn 3D
human shape and pose from dense correspondences of body
parts. As illustrated in Fig. 1(d), DaNet utilizes IUV maps as
the intermediate information for more efficient learning, and
decomposes the prediction modules into multiple streams
considering that the prediction of different parameters re-
quires the receptive fields with different sizes. To robustly
predict the rotations of body joints, DaNet aggregates mes-
sages from different streams and refines the rotation features
via an auxiliary position feature space to exploit the spatial
relationships between body joints. For better generaliza-
tion, a Part-based Dropout (PartDrop) strategy is further
introduced to drop out dense information from intermedi-
ate representations during training, which could effectively
regularize the network and encourage it to learn features
from complementary body parts and leverage information
from neighboring body joints. As will be validated in our
experiments, all the above new designs could contribute to
better part-based learning and improve the reconstruction
performance. To sum up, the main contributions in this
work are listed as follows.
• We comprehensively study the effectiveness of adopting

the IUV maps in both global and local scales, which
contains densely semantic information of body parts, as
intermediate representations for the task of 3D human
pose and shape estimation.

• Our reconstruction network is designed to have decom-
posed streams to provide global perception for the camera
and shape prediction while detailed perception for pose

prediction of each body joint.
• A part-based dropout strategy is introduced to drop

dense information from intermediate representations dur-
ing training. Such a strategy can encourage the network
to learn features from complementary body parts, which
also has the potential for other structured image under-
standing tasks.

• A position-aided rotation feature refinement strategy is
proposed to aggregate messages from different part fea-
tures. It is more efficient to exploit the spatial relationship
in an auxiliary position feature space since the correlations
between position features are much stronger.

An early version of this work appeared in [11]. We have
made significant extensions to our previous work in three
main aspects. First, the methodology is improved to be
more accurate and robust thanks to several new designs,
including the part-based dropout strategy for better general-
ization performance and the customized graph convolutions
for more efficient and better feature mapping and refine-
ment. Second, more extensive evaluations and comparisons
are included to validate the effectiveness of our method,
including evaluations on additional datasets and compar-
isons of the reconstruction errors across different human
actions and model surface areas. Third, more discussions are
provided in our ablation studies, including comprehensive
evaluations on the benefit of adopting IUV as intermediate
representations and in-depth analyses on the refinement
upon the rotation feature space and position feature space.

The remainder of this paper is organized as follows.
Section 2 briefly reviews previous work related to ours.
Section 3 provides preliminary knowledge about the SMPL
model and IUV maps. Details of the proposed network are
presented in Section 4. Experimental results and analyses
are included in Section 5. Finally, Section 6 concludes the
paper.

2 RELATED WORK

2.1 3D Human Shape and Pose Estimation
Early pioneering work on 3D human model reconstruction
mainly focuses on the optimization of the fitting process.
Among them, [12], [13] fit the body model SCAPE [8] with
the requirement of ground truth silhouettes or manual ini-
tialization. Bogo et al. [2] introduce the optimization method
SMPLify and make the first attempt to automatically fit
the SMPL model to 2D body joints by leveraging multiple
priors. Lassner et al. [3] extend this method and improve
the reconstruction performance by incorporating silhouette
information in the fitting procedure. These optimization-
based methods typically rely on accurate 2D observations
and the prior terms imposed on the shape and pose param-
eters, making the procedure time-consuming and sensitive
to the initialization. Alternatively, recent regression-based
methods employ neural networks to predict the shape and
pose parameters directly and learn the priors in a data-
driven manner. These efforts mainly focus on several as-
pects including intermediate representation leveraging, ar-
chitecture designs, structural information modeling, and re-
projection loss designs, etc. Our work makes contributions
to the first three aspects above and is also complementary to
the work focusing on the re-projection loss designs [4], [14],
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[15], reconstruction from videos or multi-view images [16],
[17], [18], [19], [20], and detailed or holistic body model
learning [21], [22], [23].

2.1.1 Intermediate Representation
The recovery of the 3D human pose from a monocular
image is challenging. Common strategies use intermediate
estimations as the proxy representation to alleviate the
difficulty. These methods can benefit from existing state-of-
the-art networks for lower-level tasks. For the recovery of
3D human pose or human model, 2D joint positions [24],
[25], [26], [27], silhouette [6], [28], [29], segmentation [7],
depth maps [30], [31], joint heatmaps [4], [6], [32], volumet-
ric representation [33], [34], [35], [36], and 3D orientation
fields [37], [38] are adopted in literature as intermediate
representations to facilitate the learning task. Though the
aforementioned representations are helpful for the task, de-
tailed information contained within body parts is missing in
these coarse representations, which becomes the bottleneck
for fine-grained prediction tasks. Recently, DensePose [39]
regresses the IUV maps directly from images, which pro-
vides the dense correspondence mapping from the image
to the human body model. However, the 3D model cannot
be directly retrieved from such a 2.5D projection. In our
work, we propose to adopt such a densely semantic map
as the intermediate representation for the task of 3D human
shape and pose estimation. To the best of our knowledge,
we are among the first attempts [15], [40], [41] to leverage
IUV maps for 3D human model recovery. In comparison, the
major differences between concurrent efforts and ours lie in
three aspects: 1) [15], [40], [41] obtain IUV predictions from
a pretrained network of DensePose [39], while our work
augments the annotations of 3D human pose datasets with
the rendered ground-truth IUV maps and imposes dense
supervisions on the intermediate representations; 2) [15],
[40], [41] only leverage global IUV maps, while our work
exploits using IUV maps in both global and local scales;
3) DenseRaC [41] resorts to involving more synthetic IUV
maps as additional training data while our work introduces
the part-based dropout upon IUV maps to improve general-
ization. We believe these concurrent work complement each
other and enrich the research community.

2.1.2 Architecture Design
Existing approaches to 3D human shape and pose esti-
mation have designed a number of network architectures
for more effective learning of the highly nonlinear image-
to-model mapping. Tan et al. [42] develop an encoder-
decoder based framework where the decoder learns the
SMPL-to-silhouette mapping from synthetic data and the
encoder learns the image-to-SMPL mapping with the de-
coder frozen. Kanazawa et al. [5] present an end-to-end
framework HMR to reconstruct the SMPL model directly
from images using a single CNN with an iterative regres-
sion module. Kolotouros et al. [43] enhance HMR with the
fitting process of SMPLify [2] to incorporate regression- and
optimization-based methods. Pavlakos et al. [6] propose to
predict the shape and pose parameters from the estimated
silhouettes and joint locations respectively. Sun et al. [44]
also leverage joint locations and further involve deep fea-
tures into the prediction process. Instead of regressing the

shape and pose parameters directly, Kolotouros et al. [40]
employ a Graph CNN [45] to regress the 3D coordinates of
the human mesh vertices, while Yao et al. [46] regress the 3D
coordinates in the form of an unwrapped position map. All
aforementioned regression-based methods predict the pose
in a global manner. In contrast, our DaNet predicts joint
poses from multiple streams, hence the visual cues could
be captured in a fine-grained manner. Recently, Güler et
al. [14] also introduce a part-based reconstruction method
to predict poses from the deep features pooled around body
joints. In comparison, the pooling operation of our DaNet
is performed on intermediate representations, enabling de-
tailed perception for better pose feature learning. Moreover,
existing approaches for rotation-based pose estimation do
not consider feature refinement, while DaNet includes an
effective rotation feature refinement scheme for robust pose
predictions.

2.1.3 Structural Information Modeling

Leveraging the articulated structure information is crucial
for human pose modeling [47], [48], [49]. Recent deep
learning-based approaches to human pose estimation [9],
[10], [50], [51], [52] incorporate the structured feature learn-
ing in their network architecture designs. All these efforts
exploit the relationship between the position features of
body joints and their feature refinement strategies are only
validated on the position-based pose estimation problem.
Our work is complementary to them by investigating the
refinement for rotation features under the context of the
rotation-based pose representation, which paves a new way
to impose structural constraints upon rotation features. Our
solution aggregates the rotation features into a position
feature space, where the aforementioned structural feature
learning approaches could be easily applied.

For more geometrically reasonable pose predictions, dif-
ferent types of pose priors [53], [54], [55], [56], [57] are
also employed as constraints in the learning procedure.
For instance, Akhter and Black [53] learn the pose prior in
the form of joint angle constraints. Sun et al. [55] design
handcrafted constraints such as limb-lengths and their pro-
portions. Similar constraints are exploited in [56] under the
weakly-supervised setting. For the rotation-based pose rep-
resentation in the SMPL model, though it inherently satisfies
structure constraints such as limb proportions, the pose
prior is still essential for better reconstruction performance.
SMPLify [2] imposes several penalizing terms on predicted
poses to prevent unnatural results. Kanazawa et al. [5]
introduce an adversarial prior for guiding the prediction to
be realistic. All these methods consider the pose prior at the
output level. In our work, we will exploit the relationship at
the feature level for better 3D pose estimation in the SMPL
model.

2.2 Regularization in Neural Networks

Regularization is important to neural networks for better
generalization performance. A number of regularization
techniques have been proposed to remove features from
neural networks at different granularity levels. Among
them, dropout [58] is commonly used at the fully connected
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Fig. 2. Illustration of the preparation of ground truth IUV maps. (a)(b)(c)
show the Index, U , and V values defined in DensePose [39], respec-
tively. Note that the original Index values (range from 1 to 24) are also
normalized into the [0, 1] interval. (d) Generation of ground truth IUV
Maps for 3D human body models.

layers of neural networks to drop unit-wise features inde-
pendently. The introduction of dropout has inspired the de-
velopment of other dropping out strategies with structured
forms. For instance, SpatialDropout [59] drops channel-wise
features across the entire feature map, while DropBlock [60]
drops block-wise features in contiguous regions. Different
from these techniques, our PartDrop strategy drops part-
wise features at the granularity level of semantic body parts.
Such a part-wise dropping strategy could remove patterns
in a more structured manner and perform better in our
learning task. Moreover, our PartDrop strategy is applied
on intermediate representations, which is also different from
data augmentation methods such as Cutout [61].

3 SMPL MODEL AND IUV MAPS

SMPL Model. The Skinned Multi-Person Linear model
(SMPL) [1] is one of the widely used statistical human body
models, which represents the body mesh with two sets of
parameters, i.e., the shape and pose parameters. The shape
indicates the model’s height, weight and limb proportions
while the pose indicates how the model deforms with the
rotated skeleton joints. Such decomposition of shape and
pose makes it convenient for algorithms to focus on one of
these two factors independently. In the SMPL model, the
shape parameters β ∈ R10 denote the coefficients of the
PCA basis of the body shape. The pose parameters θ ∈ R3K

denote the axis-angle representations of the relative rotation
of K skeleton joints with respect to their parents in the
kinematic tree, where K = 24 in the SMPL model. For
simplicity, the root orientation is also included as the pose
parameters of the root joint in our formulation. Given the
pose and shape parameters, the model deforms accordingly
and generates a triangulated mesh with N = 6890 vertices
M(θ,β) ∈ R3×N . The deformation process M(θ,β) is

differentiable with respect to the pose θ and shape β, which
means that the SMPL model could be integrated within a
neural network as a typical layer without any learnable
weights. After obtaining the final mesh, vertices could be
further mapped to sparse 3D keypoints by a pretrained
linear regressor.

IUV Maps. Reconstructing the 3D object model from a
monocular image is ambiguous, but there are determinate
correspondences between foreground pixels on 2D images
and vertices on 3D surfaces. Such correspondences could be
represented in the form of UV maps, where the foreground
pixels contain the corresponding UV coordinate values. In
this way, the pixels on the foreground could be projected
back to vertices on the template mesh according to a prede-
fined bijective mapping between the 3D surface space and
the 2D UV space. For the human body model, the corre-
spondence could have finer granularity by introducing the
Index of the body parts [39], [62], which results in the IUV
maps H = (Hi|Hu|Hv) ∈ R(1+P )×hiuv×wiuv×3, where P
denotes the number of body parts, hiuv and wiuv denote
the height and width of IUV maps. The Index channels
Hi indicates whether a pixel belongs to the background
or a specific body part, while the UV channels Hu and
Hv contain the corresponding U , V values of visible body
parts respectively. The IUV maps H encode Index, U, and V
values individually for P body parts in a one-hot manner
along (1 + P ) ways. The Index values for body parts count
from 1 and Index 0 is reserved for the background. For each
body part, the UV space is independent so that the repre-
sentation could be more fine-grained. The IUV annotation
of the human body is firstly introduced in DenseReg [62]
and DensePose [39]. Figs. 2(a)(b)(c) show the Index, U, and
V values on the SMPL model as defined in DensePose [39].

Preparation of IUV Maps for 3D Human Pose Datasets.
Currently, there is no 3D human pose dataset providing
IUV annotations. In this work, for those datasets providing
SMPL parameters with human images, we augment their
annotations by rendering the corresponding ground-truth
IUV maps based on the same IUV mapping protocol of
DensePose [39]. Specifically, we first construct a template
texture map from IUV values of each vertex on the SMPL
model, and then employ a renderer to generate IUV maps.
As illustrated in Fig. 2(d), for each face in the triangulated
mesh, the texture values used for rendering is a triplet vector
denoting the corresponding Index, U , and V values. Then,
given SMPL models, the corresponding IUV maps can be
generated by existing rendering algorithms such as [63],
[64]. Specifically, the renderer takes the template texture
map and 3D model as inputs and output a rendered image
with the size of hiuv × wiuv × 3. Afterwards, the rendered
image is reorganized as the shape of (1+P )×hiuv×wiuv×3
by converting values into one-hot representations.

4 METHODOLOGY

As illustrated in Fig. 3, our DaNet decomposes the predic-
tion task into one global stream for the camera and shape
predictions and multiple local streams for joint pose predic-
tions. The overall pipeline involves two consecutive stages.
In the first stage, the IUV maps are estimated from global
and local perspectives in consideration of the different sizes
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Fig. 3. Overview of the proposed Decompose-and-aggregate Network (DaNet).

of the receptive fields required by the prediction of different
parameters. In the second stage, the global and local IUV
maps are used for different feature extraction and predic-
tion tasks. The global features are extracted from global
IUV maps and then directly used to predict camera and
body shape. The rotation features are extracted from partial
IUV maps and further fed into the aggregated refinement
module before the final prediction of joint poses. During
training, the part-based dropout is applied to the estimated
IUV maps between the above two stages.

Overall, our objective function is a combination of three
objectives:

L = Linter + Ltarget + Lrefine, (1)

where Linter is the objective for estimating the intermediate
representations (Sec. 4.1), Ltarget is the objective for predict-
ing the camera and SMPL parameters (Sec. 4.2), Lrefine is
the objective involving in the aggregated refinement module
(Sec. 4.3). In the following subsections, we will present the
technical details and rationale of our method.

4.1 Global and Partial IUV Estimation
The first stage in our method aims to estimate correspond-
ing IUV maps from input images for subsequent predic-
tion tasks. Specifically, a fully convolutional network is
employed to produce K+1 sets of IUV maps, including one
set of global IUV maps and K sets of partial IUV maps for
the corresponding K body joints. The global IUV maps are
aligned with the original image through up-sampling, while
the partial IUV maps are centered around the body joints.
Fig. 4 visualizes a sample of the global and partial IUV
maps. The feature maps outputted from the last layer of the
FCN would be shared by the estimation tasks of both global
and partial IUV maps. The estimation of the global IUV
maps is quite straightforward since they could be obtained
by simply feeding these feature maps into a convolutional
layer. For the estimation of each set of partial IUV maps,
a joint-centric RoI pooling would be first performed on
these feature maps to extract appropriate sub-regions, which
results in K sets of partial feature maps. Then, the K sets of
partial IUV maps would be estimated independently from
these partial feature maps. Now, we will give details about
the RoI pooling process for partial IUV estimation.

Joint-centric RoI Pooling. For pose parameters in the
SMPL model, they represent the relative rotation of each
body joint with respect to its parent in the kinematic tree.
Hence, the perception of joint poses should individually
focus on corresponding body parts. In other words, globally
zooming, translating the human in the image should have
no effect on the pose estimation of body joints. Moreover,
the ideal scale factors for the perception of joint poses
should vary from one joint to another since the propor-
tions of body parts are different. To this end, we perform
joint-centric RoI pooling on feature maps for partial IUV
estimation. Particularly, for each body joint, a sub-region of
the feature maps is extracted and spatially transformed to a
fixed resolution for subsequent partial IUV map estimation
and joint pose prediction. In our implementation, the RoI
pooling is accomplished by a Spatial Transformer Network
(STN) [65]. In comparison with the conventional STNs, the
pooling process in our network is learned in an explicitly
supervised manner.

As illustrated in Fig. 5(a), the joint-centric RoI pooling
operations are guided by 2D joint positions so that each
sub-region is centered around the target joint. Specifically,
2D joint heatmaps are estimated along with the global IUV
maps in a multi-task learning manner, and 2D joint positions
are retrieved from heatmaps using the soft-argmax [66] op-
eration. Without loss of generality, let jk denote the position
of the k-th body joint. Then, the center and scale parameters
used for spatial transformation are determined individually
for each set of partial IUV maps. Specifically, for the k-th
set of partial IUV maps, the center ck is the position of the
k-th joint, while the scale sk is proportional to the size of the
foreground region, i.e.,

ck = jk,

sk = αk max(wbbox, hbbox) + δ,
(2)

where αk and δ are two constants, wbbox and hbbox de-
note the width and height of the foreground bounding
box respectively. In our implementation, the foreground is
obtained from the part segmentation (i.e., Index channels
of estimated IUV maps). Compared with our previous
work [11] calculating sk from 2D joints, the sks determined
by foreground regions here are more robust to 2D joint
localization.
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(a) (b) (c)

Fig. 4. Visualization of (a) global, (b) partial, and (c) simplified partial
IUV maps.
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Fig. 5. Joint-centric RoI pooling. (a) The RoI pooling is implemented as
an STN. (b) The evolution of αks of different body joints over learning
iterations.

Note that the above constants αk and δ can be hand-
crafted or learned in the STN by taking ground-truth IUV
maps as inputs. For learned αks, Fig. 5(b) shows how the
values of different body joints evolve over learning itera-
tions. It can be observed that αks are enlarged for some
joints while shrunk for others, which provides more suitable
RoI sizes for each body joint.

After obtaining the transformation parameters in Eq. 2,
the feature maps extracted from the last layer of fully
convolutional network are spatially transformed to a fixed
resolution and used to estimate the partial IUV maps, where
the corresponding ground-truth ones are also extracted from
the ground-truth global IUV maps using the same pooling
process.

Considering that the pose of a body joint is only related
to its adjacent body parts, we can further simplify partial
IUV maps by discarding those irrelevant body parts. For
each set of partial IUV maps, we retain specific channels
corresponding to those body parts surrounding the target
joint. The partial IUV maps before and after the simplifica-
tion are depicted in Fig. 4(b) and Fig. 4(c) respectively.

Loss Functions. A classification loss and several regres-
sion losses are involved in the training of this stage. For
both global and partial IUV maps, the loss is calculated
in the same manner and denoted as Liuv . Specifically, a
classification loss is imposed on the Index channels of IUV
maps, where a (1 + P )-way cross-entropy loss is employed
to classify a pixel belonging to either background or one
among P body parts. For the UV channels of IUV maps,
an L1 based regression loss is adopted, and is only taken
into account for those foreground pixels. In other words, the
estimated UV channels are firstly masked by the ground-
truth Index channel before applying the regression loss. For
the 2D joint heatmaps and 2D joint positions estimated for
RoI pooling, an L1 based regression loss is adopted and
denoted as Lroi. Overall, the objective in the IUV estimation
stage involves two main losses:

Linter = λiuvLiuv + λroiLroi, (3)

where λiuv and λroi are used to balance the two terms.

4.2 Camera, Shape and Pose Prediction
After obtaining the global and partial IUV maps, the camera
and shape parameters would be predicted in the global
stream, while pose parameters would be predicted in the
local streams.

The global stream consists of a ResNet [67] as the back-
bone network and a fully connected layer added at the end
with 13 outputs, corresponding to the camera scale s ∈ R,
translation t ∈ R2 and the shape parameters β ∈ R10. In
the local streams, a tailored ResNet acts as the backbone
network shared by all body joints and is followed by K
residual layers for rotation feature extraction individually.
For the k-th body joint, the extracted rotation features
would be refined (see Sec. 4.3) and then used to predict
the rotation matrix Rk ∈ R3×3 via a fully connected layer.
Here, we follow previous work [6], [7] to predict the rotation
matrix representation of the pose parameters θ rather than
the axis-angle representation defined in the SMPL model.
Note that using other rotation representations such as the
6D continuous representation [68] is also feasible. An L1

loss is imposed on the predicted camera, shape, and pose
parameter, and we denote it as Lsmpl.

Following previous work [5], [6], [7], we also add ad-
ditional constraint and regression objective for better per-
formance. For the predicted rotation matrix, we impose an
orthogonal constraint loss Lorth =

∑K−1
k=0

∥∥RkR
T
k − I

∥∥
2

upon the predicted rotation matrices {Rk}K−1
k=0 to guarantee

their orthogonality. Moreover, given the predicted SMPL
parameters, the performance could be further improved
by adding supervision explicitly on the resulting model
M(θ,β). Specifically, three L1 based loss functions are
used to measure the difference between the ground-truth
positions and the predicted ones. The corresponding losses
are denoted as Lvert for vertices on 3D mesh, L3Dkp for
sparse 3D human keypoints, and Lreproj for the reprojected
2D human keypoints, respectively. For the sparse 3D hu-
man keypoints, the predicted positions are obtained via a
pretrained linear regressor by mapping the mesh vertices to
the 3D keypoints defined in human pose datasets. Overall,
the objective in this prediction stage is the weighted sum of
multiple losses:

Ltarget = λsmplLsmpl + λorthLorth

+ λpoint (Lvert + L3Dkp + Lreproj) ,
(4)

where λsmpl, λorth, and λpoint are balance weights.
Part-based Dropout. Our approach learn the shape and

pose from the IUV intermediate representation, which con-
tains dense correspondences of the body parts. Following
previous work on data augmentation [61] and model reg-
ularization [58], [60], we introduce a Part-based Dropout
(PartDrop) strategy to drop out semantic information from
intermediate representations during training. PartDrop has
a dropping rate γ as the probability of dropping values
in the estimated IUV maps. In contrast to other dropping
out strategies such as Dropout [58] and DropBlock [60], the
proposed PartDrop strategy drops features in contiguous
regions at the granularity level of body parts. Specifically,
for each training sample, the index subset Idrop of the body
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(a) (b) (c) (d)

Fig. 6. Comparison of different dropping out strategy. (a) Original IUV
map. (b)(c)(d) PartDrop (ours), DropBlock [60] and Dropout [58] drop
IUV values in part-wise, block-wise, and unit-wise manners, respectively.
The corresponding binary masks are shown on the top row.

parts to be dropped is randomly selected from {1, 2, . . . , P}
with the probability of γ. Then, for both global and partial
IUV maps, the estimated IUV values of selected body parts
are dropped out by setting corresponding body parts as
zeros:

H[p, :, :, :] = 0, for p ∈ Idrop, (5)

where H[p, :, :, :] denotes IUV maps with the part index of
p.

PartDrop is motivated by the observation that the es-
timated IUV maps on real-world images typically have
errors on irregular parts in challenging cases such as heavy
occlusions. Fig. 6 visualizes how PartDrop, DropBlock [60],
and Dropout [58] drop values in part-wise, block-wise, and
unit-wise manners. It can be observed that, Dropout leaves
obvious pepper-like artifacts after dropping, DropBlock in-
troduces unwanted square patterns, while PartDrop brings
much less visual artifacts in the resulting IUV maps. In com-
parison with DropBlock and Dropout, the proposed Part-
Drop can remove semantic information from foreground
areas in a more structured manner, which consequently
enforces the neural network to learn features from comple-
mentary body parts and improves its generalization.

4.3 Rotation Feature Refinement
In our approach, the rotation features extracted in lo-
cal streams are aggregated to exploit spatial relationships
among body joints. As illustrated in Fig. 7(a), the position-
aided rotation feature refinement involves three consecutive
steps, namely rotation feature collection, position feature
refinement, and refined feature conversion. Specifically, the
rotation features are first collected into the position feature
space where the feature refinement is performed. After that,
the rotation feature refinement is accomplished by convert-
ing the refined position features back to the rotation feature
space. All these three steps are performed by customized
graph convolution layers. In particular, we consider the
following graph-based convolution layer G(·) that employs
one popular formulation of the Graph Convolution Net-
works as proposed in Kipf et al. [45].

Zout = G(A,Zin) = σ(ÂZinW ), (6)

where Zin and Zout are input and output features respec-
tively, σ(·) is the activation function,W is the parameters of

convolution kernels, Â denotes the row-normalized matrix
of the graph adjacency matrixA, i.e., Â =D− 1

2AD− 1
2 ifA

is a symmetric matrix, and otherwise Â =D−1A, whereD
is the diagonal node degree matrix ofAwithDii =

∑
jAij .

For simplicity, we also refer to the graph with adjacency
matrix of A as graph A.

Step 1: Rotation Feature Collection. Note that the rota-
tion of each body joint could be viewed as sequential data
along the kinematic chain. This is inspired by the fact that
the human could act in a recurrent manner according to the
kinematic tree shown in Fig.7(b). The position of a specific
body joint can be calculated from the collection of the
relative rotations and bone lengths of those joints belonging
to the same kinematic chain. At the feature level, we propose
to learn the mapping from rotation feature space to position
feature space. To that end, one graph convolution layer is
customized to gather information from body joints along
the kinematic chain and learn such mapping. Formally, let
X ∈ RK×C denote the rotation features extracted from K
sets of partial IUV maps withC being the feature dimension.
The position features Y ∈ RK×C of K joints is obtained by
feeding X to the graph convolution, i.e.,

Y = G(Ar2p,X), (7)

where the graph with adjacency matrix Ar2p is customized
as a collection graph for mapping rotation features into the
position feature space, in which Ar2p

ij = 1 if the j-th joint
is one of the ancestors of the i-th joint along the kinematic
chain, and otherwise Ar2p

ij = 0. The adjacency matrix Ar2p

of the collection graph is depicted in Fig. 7(c).
Step 2: Position Feature Refinement. Since there are

strong spatial correlations among neighboring body joints,
utilizing such structured constraints could effectively im-
prove the features learned at each joint. Towards this goal,
a graph-based convolution network is employed to exploit
spatial relationships between joints. Specifically, the position
features Y are fed into L graph convolution layers with the
following layer-wise formulation:

Y (l) = G(Arf ,Y (l−1)), (8)

where Y l denotes the position features obtained from the
l-th layer with Y 0 = Y , and the graph with adjacency
matrix Arf = I + Ãrf serves as a refinement graph for
feature refinement, in which Ãrf

ij = 1 if the i-th and j-th
joints are neighboring, and otherwise Ãrf

ij = 0. After graph
convolutions, the refined position features Ŷ are obtained
by adding Y L with the original position features Y in a
residual manner, i.e., Ŷ = Y + Y L. Fig. 7(d) shows an
example of the adjacency matrix Arf which considers both
one-hop and two-hop neighbors. Note that Arf could have
various forms according to the neighbor definition of body
joints.

Inspired by previous work [52], [69], we also add a
learnable edge weighting mask on the graph convolution
of this step since messages from different joints should
have different contributions to the feature refinement of the
target joint. In this way, we have the adjacency matrix Arf

improved as
Arf = I +M ◦ Ãrf , (9)
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(e) Ap2r

Fig. 7. Illustration of the aggregated refinement module. (a) Three steps
of the proposed refinement strategy. (b) The kinematic tree with K = 24
joints in the SMPL model. The pelvis joint with 0 index is the root node of
the tree. Joints belonging to the same kinematic chain are linked by the
line with the same color. (c)(d)(e) Adjacency matrices of the graphs used
in three steps for the feature collection, refinement, and conversion.

where ◦ denotes the element-wise product, M ∈ [0, 1]K×K

is the learnable edge weighting matrix serving as an at-
tention mask of the graph to balance the contributions of
neighboring features to the target feature.

Step 3: Refined Feature Conversion. The last step of
refinement is to convert the refined features back to the
original rotation feature space. Since the rotation and po-
sition of body joints are two mutual representation of 3D
human pose, after the refinement of position features, the
rotation features can be refined accordingly1. Specifically,
for the k-th body joint, its rotation features can be refined
by aggregating messages from the refined position features
of three consecutive body joints, i.e., the joint itself and its
parent and child joints. Similar to the first step, the mapping
from position features to rotation features is also learned via
a graph-based convolution layer, where the difference lies in
the adjacency matrix of the graph. Formally, the refined po-
sition features Ŷ are fed into the graph to obtain features in
the rotation space, resulting in the refined rotation features
X̂ for the final prediction of joint pose parameters, i.e.,

X̂ = G(Ap2r, Ŷ ), (10)

where the graph with adjacency matrix Ap2r = I + Ãp2r

is customized as a conversion graph for mapping position
features to rotation features, in which Ãp2r

ij = 1 if the j-
th joint is the parent or child joint of the i-th joint, and
otherwise Ãij = 0. The adjacency matrix Ap2r of the
conversion graph is depicted in Fig. 7(e).

Supervision in Refinement. The rotation and position
feature spaces are built under corresponding supervisions
during training. As illustrated in Fig. 7(a), the rotation

1. Strictly speaking, the joint rotations can not be fully retrieved from
the joint positions due to the fewer DoFs specified in position-based
poses. This issue is mild at the feature level since features could be
more redundant.

features X and X̂ are used to predict joint rotations, while
the position features Y and Ŷ are used to predict joint po-
sitions. L1 based rotation and position supervisions are im-
posed on these predictions correspondingly, which compose
the objective Lrefine involved in the refinement procedure.
Note that these intermediate predictions are unnecessary
during testing.

5 EXPERIMENTS

5.1 Implementation Details

The FCN for IUV estimation in our framework adopts the
architecture of HRNet-W48 [70], which is one of the most
recent state-of-the-art networks for dense estimation tasks.
The FCN receives the 224× 224 input and produces 56× 56
feature maps for estimating global and local IUV maps with
the same resolution. The IUV estimation network is initial-
ized with the model pretrained on the COCO keypoint de-
tection dataset [71], which is helpful for robust joint-centric
RoI pooling and partial IUV estimation. Two ImageNet-
pretrained ResNet-18 [67] are employed as the backbone
networks for global and rotation feature extraction respec-
tively. During training, data augmentation techniques, in-
cluding color jittering and flipping, are applied randomly
to input images. Random rotation is used when in-the-
wild datasets are involved for training. The IUV estimation
task is first trained for 5k iterations before involving the
parameter prediction task. The αks in Eq. (2) are first learned
using ground-truth IUV maps as inputs and then frozen
as constants for other experiments, while δ is empirically
set to 0.1. The hyper-parameters λs are decided based on
the scales of values in objectives. The dropping rate γ for
PartDrop is adopted as 0.3 in our experiments. For more
robust pose recovery from the estimated partial IUV, we
perform random jittering on the estimated 2D joint position
and the scale of partial IUV maps during training. Following
previous work [5], [43], the predicted poses are initialized
from the mean pose parameters. For faster runtime, the
local streams are implemented to run in a parallel manner.
Specifically, the partial IUV maps of all body joints are con-
catenated batch-wise and then fed into the backbone feature
extractor. Moreover, individual rotation feature extraction is
implemented based on group convolution. By default, we
adopt the Adam [72] optimizer with an initial learning rate
of 1 × 10−4 to train our model, and reduce the learning
rate to 1 × 10−5 after 30k iterations. The learning process
converges after around 60k iterations and takes about 25
hours on a single TITAN Xp GPU. During testing, due to
the fundamental depth-scale ambiguity, we follow previous
work [5], [7] to center the person within the image and per-
form scaling such that the inputs have the same setting as
training. Our experiments are implemented in PyTorch [73].
More implementation details could be found in the publicly
available code.

5.2 Datasets and Evaluation Metrics

Human3.6M. Human3.6M [74] is a large-scale dataset which
consists of 3.6 millions of video frames captured in the
controlled environment, and currently the most commonly
used benchmark dataset for 3D human pose estimation.
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Kanazawa et al. [5] generated the ground truth SMPL pa-
rameters by applying MoSH [75] to the sparse 3D MoCap
marker data. Following the common protocols [5], [6], [33],
we use five subjects (S1, S5, S6, S7, S8) for training and two
subjects (S9, S11) for evaluation. We also down-sample the
original videos from 50fps to 10fps to remove redundant
frames, resulting in 312,188 frames for training and 26,859
frames for testing.

UP-3D. UP-3D [3] is a collection dataset of existing 2D
human pose datasets (i.e., LSP [76], LSP-extended [77], MPII
HumanPose [78], and FashionPose [79]), containing 5,703
images for training, 1,423 images for validation, and 1,389
images for testing. The SMPL parameter annotations of
these real-world images are augmented in a semi-automatic
way by using an extended version of SMPLify [3].

COCO. The COCO dataset [71] contains a large scale
of images and person instances labeled with 17 keypoints.
Based on the COCO dataset, DensePose-COCO [39] further
provides the dense correspondences from 2D images to the
3D surface of the human body model for 50K humans.
Different from our rendered IUV maps, the correspondence
annotations in DensePose-COCO only consist of approxi-
mately 100-150 points per person, which are a sparse subset
of the foreground pixels of human images. In our experi-
ments, we discard those persons without 2D keypoint anno-
tations, resulting in 39,210 samples for training. Since there
are no ground-truth shape and pose parameters for COCO,
we evaluate our method quantitatively on the keypoint
localization task using its validation set, which includes
50,197 samples.

3DPW. The 3DPW dataset [80] is a recent in-the-wild
dataset providing accurate shape and pose ground truth
annotations. This dataset captured IMU-equipped actors in
challenging outdoor scenes with various activities. Follow-
ing previous work [16], [43], we do not use its data for
training but perform evaluations on its defined test set only.
There are 35,515 samples extracted from videos for testing.

Fitted SMPL labels from SPIN. Kolotouros et al. [43]
proposed SPIN to incorporate a fitting procedure within
the training of a SMPL regressor. The regressor provided
better initialization for the fitting of human models to 2D
keypoints, and the resulting SMPL parameters could be
more accurate than those fitted in a static manner. For
evaluation on 3DPW [80], our model would be supervised
with the final fitted SMPL labels from SPIN [43] for in-
the-wild datasets including LSP [76], LSP-Extended [77],
MPII [78], COCO [71], and MPI-INF-3DHP [81].

Evaluation Metrics. Following previous work [6], [15],
[34], for evaluating the reconstruction performance, we
adopt the mean Per-vertex Error (PVE) as the primary
metric, which is defined as the average point-to-point Eu-
clidean distance between the predicted model vertices and
the ground truth model vertices. Besides the PVE metric, we
further adopt PVE-S and PVE-P as secondary metrics for
separately evaluate the shape and pose prediction results.
The PVE-S computes the per-vertex error with the pose
parameters of ground truth and predicted models set as
zeros (i.e., models under the rest pose [1]), while the PVE-P
computes the analogous per-vertex error with the shape
parameters set as zeros. For the Human3.6M dataset, the
widely used Mean Per Joint Position Error (MPJPE) and

the MPJPE after rigid alignment of the prediction with
ground truth using Procrustes Analysis (MPJPE-PA) are
also adopted to quantitatively evaluate the 3D human pose
estimation performance. The above three metrics will be
reported in millimeters (mm) by default.

For the keypoint localization task on COCO, the
commonly-used metric is the Average Precision (AP) de-
fined by its organizers2. The keypoint localization AP is
calculated based on the Object Keypoint Similarity (OKS),
which plays the same role as the IoU in object detection.
We report results using the mean AP, and the variants of
AP including AP50 (AP at OKS = 0.50), AP75 (AP at OKS =
0.75), APM for medium objects, and APL for large objects.

5.3 Comparison with State-of-the-art Methods

Table 1
Quantitative comparison with state-of-the-art methods on the

Human3.6M dataset.

Method PVE MPJPE MPJPE-PA

Zhou et al. [54] - 107.3 -
Tung et al. [4] - - 98.4
SMPLify [2] 202.0 - 82.3
SMPLify++ [3] - - 80.7
Pavlakos et al. [6] 155.5 - 75.9
HMR [5] - 88.0 56.8
NBF [7] - - 59.9
Xiang et al. [38] - 65.6 -
Arnab et al. [17] - 77.8 54.3
CMR [40] - - 50.1
HoloPose [14] - 60.3 46.5
TexturePose [19] - - 49.7
DenseRaC [41] - 76.8 48.0
SPIN [43] - - 41.1

DaNet-LSTM [11] 75.1 61.5 48.6
Ours 66.5 54.6 42.9

5.3.1 Comparison on the Indoor Dataset.

Evaluation on Human3.6M. We evaluate the 3D human
mesh recovery as well as pose estimation performance for
quantitative comparison on Human3.6M, where our model
is trained on its training set. Table 1 reports the comparison
results with previous methods that output more than sparse
3D keypoint positions. For regression-based methods in
Table 1, different architectures have been designed to predict
the shape and pose parameters. Among them, HMR [5]
adopts a single CNN and an iterative regression module
to produce all parameters. Pavlakos et al. [6] decompose
the shape and pose prediction tasks, while their pose pa-
rameters are predicted from 2D joints positions. NBF [7]
adopts segmentation as the intermediate representation and
learns all parameters from it. CMR [40] directly regresses
3D meshes with a graph-based convolutional network. All
these architectures estimate pose parameters through a sin-
gle stream with an exception that HoloPose [14] regresses
poses using a part-based model. As can be seen from Table 1,
our network significantly outperforms the above-mentioned
architectures. It’s worth noting that the methods reported
in Table 1 are not strictly comparable since they may use

2. https://cocodataset.org/#keypoints-eval

https://cocodataset.org/#keypoints-eval
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Table 2
Quantitative comparison of MPJPE-PA across different actions on the Human3.6M dataset.

Method Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD. Smoke Wait WalkD. Walk WalkT. Avg.

Pavlakos et al. [33] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9
Martinez et al. [24] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

SMPLify [2] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 79.7 86.8 81.7 82.3
HMR [5] 53.2 56.8 50.4 62.4 54.0 72.9 49.4 51.4 57.8 73.7 54.4 50.0 62.6 47.1 55.0 57.2
CMR [40] 41.8 44.8 42.6 46.6 45.9 57.2 40.8 40.6 52.2 66.0 46.6 42.8 51.7 36.9 44.6 48.2
SPIN [43] 37.6 42.4 38.8 42.6 40.4 45.9 36.1 36.7 48.7 58.6 41.2 37.9 46.6 33.8 38.4 41.1

DaNet-LSTM [11] 43.3 48.8 50.6 48.3 47.3 55.5 41.6 42.7 53.8 61.5 47.4 43.2 53.3 40.8 47.9 48.6
Ours 37.9 44.3 41.2 43.3 42.1 48.7 36.2 38.9 47.4 53.7 41.1 39.9 46.0 34.6 41.3 42.9
Ours-6D 35.7 40.4 39.0 40.3 40.5 47.4 35.1 34.9 45.2 51.7 39.6 37.8 43.4 34.4 39.8 40.5
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Fig. 8. Qualitative comparison of reconstruction results on the UP-3D dataset.

different datasets for training. Among existing state-of-the-
art approaches, we have a very competitive result which
is only inferior to SPIN in Table 1. SPIN has the same
architecture as HMR except that it uses the 6D continuous
representation [68] for 3D rotations. SPIN aims to incor-
porate regression- and optimization-based methods, while
our work focuses on the design of a stronger regressor.
Hence, our method is complementary to SPIN since we can
combine them together by simply plugging our network
into SPIN.

For more comprehensive comparison, Table 2 reports
pose estimation performance across different actions on
Human3.6M. Compared with SPIN and other methods, our
method can be more robust to challenging actions such as
Sitting and Sitting Down. We believe these benefits come
from our decomposition design which enables our network
to capture more detailed information for joint poses and
produce more accurate reconstruction results. We can also
see from the last row of Table 2 that, by simply replacing
rotation matrices with the 6D representations [68] for pose

Table 3
Quantitative comparison of PVE with state-of-the-art methods on the

UP-3D dataset.

Method LSP MPII FashionPose Full

SMPLify++ [3] 174.4 184.3 108.0 169.8
HMR [5] - - - 149.2
NBF [7] - - - 134.6
Pavlakos et al. [6] 127.8 110.0 106.5 117.7
BodyNet [34] 102.5 - - -
Rong et al. [15] - - - 122.2

DaNet-LSTM [11] 90.4 83.0 61.8 83.7
Ours 88.5 82.1 60.8 82.3

parameters as SPIN do, our method can achieve results on
par with or even better than SPIN.

5.3.2 Comparison on In-the-wild Datasets

Reconstructing 3D human model on real-world images is
much more challenging due to factors such as extreme poses
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Fig. 9. Qualitative comparison of reconstruction results on the COCO dataset.

Table 4
Quantitative comparison of keypoint localization AP with state-of-the-art
methods on the COCO validation set. Results of HMR, CMR, and SPIN

are obtained based on their publicly released code and models.

Method AP AP50 AP75 APM APL

OpenPose [82] 65.3 85.2 71.3 62.2 70.7
SimpleBaseline [83] 74.3 89.6 81.1 70.5 79.7
HRNet [84] 76.3 90.8 82.9 72.3 83.4

HMR [5] 18.9 47.5 11.7 21.5 17.0
CMR [40] 9.3 26.9 4.2 11.3 8.1
SPIN [43] 17.3 39.1 13.5 19.0 16.6
SPIN-HRNet [43] 21.2 45.3 18.0 22.5 20.9

DaNet-LSTM [11] 28.5 58.7 24.6 30.8 27.1
DaNet-GCN 31.9 65.5 27.5 33.2 31.2

+ Dropout 30.6 64.6 25.7 32.0 30.0
+ DropBlock 32.0 66.9 27.4 33.8 30.9
+ PartDrop (Ours) 33.8 68.6 29.9 36.0 32.3

and heavy occlusions. In our network, the aggregated refine-
ment module and PartDrop training strategy are proposed
to enhance its robustness and generalization. We conduct
evaluation experiments on UP-3D, COCO, and 3DPW to
demonstrate the efficacy of our method.

Evaluation on UP-3D. For comparison on the UP-3D
dataset, we report quantitative results in the PVE of the
reconstructed meshes in Table 3. In comparison with pre-
vious methods, our method outperforms them across all
subsets of UP-3D by a large margin. Our closest competitor
BodyNet [34] has the PVE value of 102.5 on LSP, while
ours is 88.5. Moreover, BodyNet [34] uses both 2D and
3D estimation as the intermediate representation, which
is much more time-consuming than ours. Reconstruction
results on UP-3D are visualized in Fig. 8. Compared with

other methods, our DaNet could produce more satisfactory
results under challenging scenarios.

Image Est. IUV w./o. drop Dropout DropBlock PartDrop

Fig. 10. Comparison of different dropping out strategies in challenging
cases. From left to right: input images, estimated IUV maps, results of
models trained without dropping, with Dropout, DropBlock, and PartDrop
strategies.

Evaluation on COCO. For evaluation on COCO, we
train our model on the mixture of training data from
DensePose-COCO and Human3.6M datasets, and perform
both qualitative and quantitative comparison on the COCO
validation set. We first show qualitative reconstruction re-
sults in Fig. 9, and make comparisons with HMR [5], Rong et
al. [15], and SPIN [43]. As we can see, our method has better
generalization in real-world scenarios with more accurate
and well-aligned reconstruction performances. Our method
can produce reasonable results even in cases of extreme
poses, occlusions, and incomplete human bodies, while
competitors fail or produce visually displeasing results.

To perform quantitative evaluations on COCO, we
project keypoints from the estimated SMPL models on the
image plane, and compute the Average Percision (AP) based
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Table 5
Quantitative comparison with state-of-the-art methods on the 3DPW

dataset.

Method PVE MPJPE MPJPE-PA

Te
m

po
ra

l Kanazawa et al. [16] 139.3 116.5 72.6
Doersch et al. [85] - - 74.7
Arnab et al. [17] - - 72.2
Sun et al. [44] - - 69.5
VIBE [20] 113.4 93.5 56.5

Fr
am

e-
ba

se
d

HMR [5] - 130.0 76.7
CMR [40] - - 70.2
Rong et al. [15] 152.9 - -
SPIN [43] 114.8 96.9 59.2
SPIN-HRNet [43] 112.4 95.4 58.5

DaNet-LSTM [11] 114.6 92.2 56.9
Ours 110.8 85.5 54.8

on the keypoint similarity with the ground truth anno-
tations. We report keypoint localization APs of different
approaches in Table 4, where we also include 2D human
pose estimation approaches [70], [82], [83] for comparison.
It can be seen that, in terms of keypoint localization results,
approaches for 3D human mesh recovery lag far behind
those for 2D human pose estimation. Among approaches
for human mesh recovery, our model achieves significantly
higher APs than previous ones. Compared with the recent
state-of-the-art method SPIN [43], our model improves the
mean AP and AP50 by 16.5% and 29.5%, respectively. We
attribute such remarkable improvements to our decompose-
and-aggregate design. To validate this, we upgrade the
backbone of SPIN to HRNet-W64-C [70], a more power-
ful classification network, and denote it as SPIN-HRNet.
As shown in Table 4, though SPIN-HRNet has a stronger
backbone with more parameters than our whole network,
it brings much less gains over SPIN (3.9% improvement in
mean AP from 17.3% to 21.2%). In contrast, our network
decomposes the perception tasks and aggregates them effi-
ciently, making our SMPL regressor more effective to handle
challenging cases in real-world scenes.

Table 4 also presents the comparison of our approach
against our previous model DaNet-LSTM [11]. DaNet-LSTM
has the same network architecture with ours except that its
aggregation procedure is performed sequentially along ki-
netic chains via LSTM. Based on DaNet-LSTM, we introduce
the graph-based aggregation module and PartDrop strategy
in this work. The graph-based aggregation performs feature
refinement in parallel for all body parts, while PartDrop
regularizes the network and encourages learning features
from complementary body parts. These newly introduced
designs can help to improve the robustness and general-
ization of our model. As shown in Table 4, both two new
components contribute to higher performance in this chal-
lenging dataset. By replacing the LSTM-based aggregation
module with the graph-based one, our DaNet-GCN obtains
a 6.8% improvement in AP50. By adopting the PartDrop
strategy for training, we further have a 3.1% improvement
in AP50. Taking these two updates together, our approach
improves the AP50 by 9.9% over DaNet-LSTM from 58.7%
to 68.6%. We can also see from Table 4 that other dropping
out strategies such as Dropout and DropBlock do not work
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Fig. 11. Qualitative comparison of reconstruction results on the 3DPW
dataset.

well as PartDrop and even degrade the performance. One
intuitive explanation for this is that our PartDrop can better
imitate the corrupted IUV maps in challenging cases. As we
can observe from Fig. 10 that the body parts are missing
irregularly from the estimated IUV maps due to occlusions.
PartDrop helps to produce more natural and well-aligned
results in comparison with its alternatives.

Evaluation on 3DPW. In Table 5, we report the results of
our approach and other state-of-the-art approaches on the
3DPW test set. Here, we use the same datasets and training
strategy as SPIN [43] and do not use any data from 3DPW
for training. Besides, the valid SMPL parameters fitted in
SPIN are adopted as ground-truth labels for those in-the-
wild training datasets. As shown in Table 5, our approach
reduces the MPJPE-PA by 4.4 mm over SPIN to 54.8 mm,
achieving the best performance among frame-based and
even temporal approaches. Table 5 also includes SPIN-
HRNet for comparison, where we can see that there is only
a 0.7 mm reduction in MPJPE-PA over SPIN. Fig. 11 depicts
the qualitative results of our approach. We can observe that
our model has better generalization performances on 3DPW
in comparison with SPIN.

5.3.3 Running Time
During inference, our method takes about 93ms on a Titan
Xp GPU, where the IUV estimation accounts for 60ms while
the parameter prediction accounts for the rest 33ms. The
running time and platform of different models are included
in Table 6 for comparison. Numbers are obtained from
respective literature or evaluated using their official imple-
mentation. Overall, our method has a moderate computa-
tion cost among regression-based reconstruction methods.

Table 6
Comparison of running time (ms) with state-of-the-art models.

Method Run Time GPU

HMR [5] 40 GTX 1080 Ti
Pavlakos et al. [6] 50 Titan X
NBF [7] 110 Titan Xp
BodyNet [34] 280 Modern GPU
CMR [40] 33 RTX 2080 Ti
DenseRaC [41] 75 Tesla V100

Ours 93 Titan Xp
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Table 7
Performance of approaches adopting different intermediate

representations on the Human3.6M dataset.

Method PVE MPJPE MPJPE-PA

ConvFeat 98.9 82.5 60.3
Segmentation 90.4 74.6 57.1
IUV 87.8 71.6 55.4
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Fig. 12. Reconstruction performance on Human3.6M versus the IUV
estimation quality for approaches adopting IUV estimators with dif-
ferent architectures and training strategies. (a) Higher IUV estimation
qualities generally contribute to better reconstruction performance. IUV
estimators are all trained on Human3.6M but initialized with different
models. (b) The IUV estimators trained on Human3.6M with dense
supervisions have higher IUV estimation qualities. IUV estimators are
all pretrained on COCO and then trained on different datasets. Different
IUV estimators are denoted as †(?) or †[∗], where † is the architecture, ?
and ∗ denote the pretrained and training datasets. IUV GT stands for
taking ground-truth IUV as input. ImgNet, DP , and H36M abbreviate
ImageNet, DensePose-COCO, and Human3.6M, respectively.

5.4 Ablation Study

To evaluate the effectiveness of the key components pro-
posed in our method, we conduct ablation experiments on
Human3.6M under various settings. We will begin with our
baseline network by removing the local streams, aggregated
refinement module, and PartDrop strategy in our method.
In other words, the baseline simply uses the global stream
of DaNet to predict all parameters. Moreover, it adopts
ResNet101 [67] as the backbone network for parameter
predictions such that the model size of the baseline is com-
parable to that of the networks used in ablation experiments.

5.4.1 Intermediate Representation
To show the superiority of adopting the IUV map as the
intermediate representation, our baseline network adopts
its alternatives for the shape and pose prediction tasks.
Specifically, the IUV maps are replaced by the convolutional
feature maps outputted from the last layer of the FCN or
the part segmentation (i.e., Index channels of IUV maps).
Note that there is actually no intermediate representation for
the approach adopting feature maps as “intermediate repre-
sentation”. As observed from Table 7, the approach adopt-
ing IUV maps as intermediate representations achieves the
best performance. In our experiments, we found that the
approach without using any intermediate representation is
more prone to overfitting to the training set.

Effect of IUV Estimation Quality. We further conduct
experiments to investigate the impact of the quality of dense
estimation on the final shape and pose prediction perfor-
mance. To this end, different architectures or initializations

of the IUV estimators are adopted in ablation experiments
to produce IUV maps with different qualities. Specifically,
the IUV estimator adopts the pose estimation networks [83]
built upon ResNet-50 and ResNet-101 as alternative archi-
tectures, and these models are pretrained on ImageNet [86]
or COCO [71]. Following the protocol of DensePose [39], we
measure the quality of dense correspondence estimations
via the pointwise evaluation [39], where the area under the
curve at the threshold of 10cm (i.e., AUC10) is adopted as
the metric. Fig. 12(a) reports the reconstruction results of
ablation approaches versus their qualities of IUV estima-
tions. As we can see, networks with better IUV estimations
consistently achieve better reconstruction performance. To
investigate the performance upper bound of adopting IUV
maps as intermediate representations, we also report the
results of the approach using ground truth IUV maps as
input with the removal of the IUV estimator. As shown
in the rightmost result of Fig. 12(a), the approach learning
from the ground truth IUV maps achieves much better
performance than using the estimated one outputted from
networks, which means that there is still a large margin
for improvement by adopting IUV maps as intermediate
representations.

In contrast to the concurrent work [15], [40], [41] ob-
taining IUV maps from the pretrained network of Dense-
Pose [39], our approach augments the annotation of Hu-
man3.6M with the rendered IUV maps so that our IUV
estimator can be trained on Human3.6M with dense su-
pervision, which enables our network to have a higher
quality of IUV estimation. To verify this, the IUV estimator
is firstly trained on DensePose-COCO or Human3.6M, and
then frozen to generate IUV maps for the training of the
reconstruction task on Human3.6M. As can be seen from
Fig. 12(b), approaches with the IUV estimators trained on
Human3.6M consistently achieve better performances on
both IUV estimation and model reconstruction tasks.

5.4.2 Decomposed Perception
The decomposed perception provides fined-grained infor-
mation for detailed pose estimation. To validate the ef-
fectiveness of such a design, we report the performance
of the approaches using one-stream and multiple streams
in Table 8, where the D-Net denotes the variant of our
DaNet without using the aggregated refinement module
and PartDrop strategy. Results in PVE-S and PVE-P are also
reported in Table 8 for separately studying the efficacy of the
decomposed design on the shape and pose predictions. It
can be seen that the reconstruction performance metric PVE
is actually dominated by the PVE-P metric. Comparison
of the first and second rows in Table 8 shows that using
multiple streams has barely effects on the shape prediction
but brings a significant improvement in the pose prediction
(i.e., the PVE-P value drops more than 14%). We also report
results to validate the use of different ratios αk and the
simplification of partial IUV maps. In the 3rd and 4th rows
of Table 8, D-Net-ES adopts equal scales with all αks set
to 0.5, while D-Net-AP adopts partial IUV maps with all
body parts. As can be seen, such modifications degrade
the performance, which is due to two facts that (i) the
proportions of body parts are different and (ii) the rotational
states of different body joints are relatively independent and
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Fig. 13. Reconstruction performance of ablation approaches across different actions on the Human3.6M dataset.

0cm 5cm 10cm 15cm

(a) (b) (c) (d)

Fig. 14. Comparison of the average per-vertex error upon the model
surface for ablation approaches on the Human3.6M dataset. (a) The
baseline approach using one stream only. (b) The approach using
multiple streams for decomposed perception. (c) The approach using
decomposed perception and PartDrop strategies. (d) Our final approach
with the aggregated refinement.

Table 8
Performance of approaches using different perception strategies on the

Human3.6M dataset.

Method PVE PVE-S PVE-P MPJPE MPJPE-PA

Baseline 87.8 38.0 76.3 71.6 55.4
D-Net 74.3 36.3 64.0 61.8 48.5
D-Net-ES 76.1 36.6 65.5 63.1 49.8
D-Net-AP 76.8 36.8 65.8 63.4 49.5

involving irrelevant body parts could disturb the inference
of the target joint rotations.

To visualize the reconstruction performance on different
body areas, Fig. 14 depicts the average per-vertex error
with respect to the surface areas of the human model. As
shown in Fig. 14(a), for the baseline network, the per-vertex
errors of limb parts (hands, feet) are much higher than that
of the torso. By comparing Figs. 14(a) and 14(b), we can
conclude that our decomposed perception design alleviates
the above issue and achieves much better reconstruction
performance on limb parts. Reconstruction performances
across different actions on Human3.6M are also reported
in Fig. 13 for comprehensive evaluations. We can see that
the decomposed perception design reduces reconstruction
errors consistently for all actions.

5.4.3 Part-based Dropout

The proposed Part-based Dropout (PartDrop) strategy
drops IUV values in contiguous regions at the granularity
level of body parts. Such a dropping out strategy can
effectively regularize the neural network by removing se-
mantic information from foreground areas of intermediate
representations. In this subsection, we conduct experiments
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Fig. 15. Comparison of reconstruction performance for approaches
using different dropping out strategies on the Human3.6M dataset.
(a)(b)(c) report results with metrics of PVE, PVE-S, and PVE-P to reveal
the quality of the full model recovery, shape recovery, and pose recovery
across different dropping rates, respectively.

to validate its effectiveness and evaluate the impact of the
dropping rate on the reconstruction performance.

To validate the superiority of our PartDrop strategy,
we adopt DropBlock [60] and Dropout [58] as alternative
strategies to drop values from intermediate representations
during training. For DropBlock, following the setting of [60],
the size of the block to be dropped is set to 7 in our ex-
periments. For fair comparison, only the foreground pixels
are involved in counting the dropping rate. Fig. 15 reports
the performance of the full model reconstruction as well as
its shape and pose components under different strategies
across different dropping rates. It can be seen that the per-
formance gains brought by dropping out strategies mainly
come from the pose prediction tasks since the evaluation
metric PVE is dominated by its pose component PVE-P.
Among three strategies, Dropout is the worst and its per-
formance deteriorates quickly when increasing the rate of
dropping out. DropBlock works better than Dropout and
brings marginal gains when the dropping rate is less than
20%. Though we can see from the PVE-S curves in Fig. 15(b)
that DropBlock has comparable results with PartDrop on
shape prediction when the dropping rate is larger than 40%,
its pose prediction results degrade significantly as shown
in Fig. 15(c). We hypothesize that the removal of a large
area of block makes DropBlock similar to PartDrop for the
global perception but does harm to the local perception for
pose prediction. Compared with these two alternatives, the
proposed PartDrop is more robust to the dropping rate and
achieves the best results at a dropping rate around 30%.
The above comparison of unit-wise, block-wise, and part-
wise dropping strategies suggest that removing features in
a structured manner is crucial to our reconstruction task,
where PartDrop performs best among them. The efficacy of
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Fig. 16. Example results of approaches without refinement, or using
direct / position-aided refinement strategies.

Table 9
Performance of approaches using different feature refinement

strategies on the Human3.6M dataset.

Refinement Strategy PVE MPJPE MPJPE-PA

w/o Ref. 71.7 59.1 46.1

Direct Ref. 70.3 58.1 45.5
Pos.-implicit Ref. 69.2 56.5 44.7
Pos.-aided Ref. 66.5 54.6 42.9

PartDrop can be also validated from the reconstruction error
reduction shown in Fig. 13 and Fig. 14(c).

5.4.4 Aggregated Refinement

Our aggregated refinement module is proposed to impose
spacial structure constraints upon rotation-based pose fea-
tures. As observed from Fig. 14(d) and Fig. 13, the aggrega-
tion in DaNet effectively reduces the reconstruction errors
across all surface areas and human actions considerably.

A straightforward strategy to refine the feature would
be conducting refinement between the rotation features
directly. In such a direct refinement strategy, the first and
third steps of our refinement procedure are removed and the
rotation features are directly refined by the graph convolu-
tion layers of the second step. The features outputted from
the last refinement layer are also added with the original
rotation features in a residual manner and then used to
predict joint rotations. For fair comparison, the refinement
layer number of the direct strategy is equal to the number of
the layers involved in the three steps of the position-aided
strategy.

Rotation Feature Space vs. Position Feature Space. The
proposed position-aided refinement strategy performs re-
finement in the position feature space instead of the rotation
feature space. The graphs Ar2p and Ap2r of the first and
last refinement steps are customized to connect the rotation
and position feature spaces. The graphAr2p collects rotation
features to the position feature space, while the graph Ap2r

converts position features back to the rotation feature space.
To validate their functions, we discard position supervisions
from the objective Lrefine during refinement. We refer to
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Fig. 17. Correlation matrices of the features extracted from (a) rotation,
(b) implicit position, and (c) position feature spaces.

this strategy as the position-implicit refinement strategy since
the position feature space is built in an implicit manner.
The only difference between the direct and position-implicit
refinement strategies is that, in the latter one, there are
two mapping operations performed before and after the
refinement. We report the results of the approaches using
direct, position-implicit, position-aided strategies in Table 9
for comparison. It can be seen that the position-implicit
strategy achieves inferior results than the position-aided
strategy but better results than the direct strategy, which
means that the implicit position space still works better than
the rotation space for feature refinement. Example results of
the approach using the direct or position-aided refinement
strategy are also depicted in Fig. 16 for comparison. We
can see that the position-aided refinement helps to handle
challenging cases and produce more realistic and well-
aligned results, while the direct refinement brings marginal
to no improvement.

The reason behind the inferior performance of the direct
refinement is that the correlation between rotation features
is weak, and the messages of neighboring rotation features
are generally irrelevant to refine the target rotation feature.
Our refinement module builds an auxiliary position feature
space for feature refinement, making it much more efficient
than that in the original rotation feature space. To verify
this, we extract the features before refinement from the
rotation, implicit position, and position spaces of the three
strategies mentioned above, and compute the correlations
between features of different body joints. Fig. 17 shows the
comparison of correlation matrices of these three types of
features. As observed from Fig. 17(a), the correlation matrix
of rotation features approximates to an identity matrix,
meaning that the correlations between the rotation features
of different joints are rather weak even for two adjacent
joints. By contrast, for implicit position features in Fig. 17(b)
and position features in Fig. 17(c), the correlations between
features of adjacent joints are much higher, making it more
feasible to refine features with the messages from neighbor-
ing joints.

Benefit from Learnable Graph Edge and PartDrop.
The learnable edge weighting matrix M of the refinement
graph contributes to better balancing the importance of
neighboring messages, while the PartDrop strategy helps
to encourage the network to leverage more information
from neighboring joints. To verify their effectiveness dur-
ing feature refinement, Table 10 reports the results of the
ablation approaches incrementally adopting the learnable
edge in the refinement graph and the PartDrop strategy,
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Table 10
Ablation study of using learnable graph edge and PartDrop strategies

on the Human3.6M dataset.

Method PVE MPJPE MPJPE-PA

D-Net 74.3 61.8 48.5
+ PartDrop 71.7 59.1 46.1

D-Net+Direct 72.1 59.4 46.9
+ LearntEdge 72.7 59.6 47.0

+ PartDrop 70.3 58.1 45.5

D-Net+Pos.-aided 70.8 57.1 45.9
+ LearntEdge 68.9 55.8 44.9

+ PartDrop 66.5 54.6 42.9
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Fig. 18. Visualization of learned edge weighting matrices under different
training settings. (a)(b) Direct refinement without and with PartDrop.
(c)(d) Position-aided refinement without and with PartDrop.

where D-Net+Direct and D-Net+Pos.-aided adopt the refine-
ment module with the direct and position-aided strategy,
respectively. It can be seen that, for the direct refinement,
the performance gains mainly come from the PartDrop
strategy. In contrast, for the position-aided refinement, the
performance gains are attributed to both the learnable edge
and the PartDrop strategy. Fig. 18 depicts the learned edge
weighting matrices of different ablation approaches. As
observed, the learned edge weighting matrices of the direct
refinement are relatively flat with lower values. When using
the PartDrop strategy, the learnable values of most edges in
the refinement graph rise for the position-aided refinement,
while such a phenomenon is not observed for the direct
refinement. We conjecture that the PartDrop strategy brings
gains from two perspectives. First, PartDrop regularizes the
backbone feature extractor to focus on more complementary
regions in intermediate representations for better feature
exploitation. Second, PartDrop encourages the refinement
module to borrow more information from neighbors in the
position feature space for better feature refinement.

6 CONCLUSION

In this work, a Decompose-and-aggregate Network is pro-
posed to learn 3D human shape and pose from dense corre-
spondences of body parts with the decomposed perception,
aggregated refinement, and part-based dropout strategies.
All these new designs contribute to better part-based learn-
ing and effectively improve the reconstruction performance
by providing well-suited part perception, leveraging spatial
relationships for part pose refinement, and encouraging
the exploitation of complementary body parts. Extensive
experiments have been conducted to validate the efficacy
of key components in our method. In comparison with pre-
vious ones, our network can produce more accurate results,
while being robust to extreme poses, heavy occlusions, and

incomplete human bodies, etc. In future work, we may
explore integrating dense refinement [14] to further improve
the shape and pose recovery results.
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