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ABSTRACT
Reconstructing 3D human shape and pose from a monocular image
is challenging despite the promising results achieved bymost recent
learning based methods. The commonly occurred misalignment
comes from the facts that the mapping from image to model space
is highly non-linear and the rotation-based pose representation of
the body model is prone to result in drift of joint positions. In this
work, we present the Decompose-and-aggregate Network (DaNet)
to address these issues. DaNet includes three new designs, namely
UVI guided learning, decomposition for fine-grained perception,
and aggregation for robust prediction. First, we adopt the UVI
maps, which densely build a bridge between 2D pixels and 3D
vertexes, as an intermediate representation to facilitate the learning
of image-to-model mapping. Second, we decompose the prediction
task into one global stream and multiple local streams so that the
network not only provides global perception for the camera and
shape prediction, but also has detailed perception for part pose
prediction. Lastly, we aggregate the message from local streams to
enhance the robustness of part pose prediction, where a position-
aided rotation feature refinement strategy is proposed to exploit
the spatial relationship between body parts. Such a refinement
strategy is more efficient since the correlations between position
features are stronger than that in the original rotation feature space.
The effectiveness of our method is validated on the Human3.6M
and UP-3D datasets. Experimental results show that the proposed
method significantly improves the reconstruction performance in
comparison with previous state-of-the-art methods. Our code is
publicly available at https://github.com/HongwenZhang/DaNet-
3DHumanReconstrution.
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Figure 1: (a) A human image with the reconstructed 3D
shape. The rotation-based pose representation of the body
model is prone to result in drift of joint positions. (b) Lo-
cal visual cues are helpful for part pose perception. (c) Our
DaNet has multiple local streams for fine-grained percep-
tion of the part rotation status and aggregate them into po-
sition feature space to exploit the spatial relationship.
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1 INTRODUCTION
Reconstructing human shape and pose from a monocular image
is an appealing yet challenging task, which typically involves the
prediction of the camera and parameters of a statistical body model
(e.g. the most commonly used SMPL [27] model). Fig. 1(a) shows
an example of the reconstructed result. The challenges of this task
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Figure 2: Comparison of (a) raw RGB image, (b) silhouette,
(c) segmentation, and (d) UVI map.

come from the fundamental depth ambiguity, the complexity and
flexibility of human bodies, and variations in clothing and view-
point, etc. Traditional approaches [5, 23] fit the SMPL model to 2D
evidence such as 2D body joints or silhouettes in images, which
involve complex non-linear optimization and iterative refinement.
Recently, learning based approaches [19, 34, 37, 50] integrate the
SMPL model within neural networks and predict model parameters
directly in an end-to-end manner.

A main obstacle for this task is that the direct prediction of the
body model from the image space is complex and difficult even for
deep neural networks. In this work, we propose to adopt UVI maps
as an intermediate representation to facilitate the learning of the
mapping from image to model. As depicted in Fig. 2, compared with
other 2D representations [34, 37, 50], the UVI map could provide
more rich information, because it encodes the dense correspon-
dence between foreground pixels on 2D image and vertexes on 3D
mesh. Such a densely semantic map not only contains essential in-
formation for shape and pose estimation from the RGB images, but
also eliminates interference of unrelated factors such as appearance,
clothing, and illumination variations.

The representation of 3D body model can be factorized into the
shape and pose parameters of SMPL [27], depicting the model at
different scales. The shape parameters give an overall description
about the model such as the height and weight, while the pose pa-
rameters provide the more detailed descriptions about the rotation
status of each body joint. Previous learning-based methods [19, 34]
typically predict them simultaneously using the global informa-
tion from the last layer of the neural network. We observe that
the detailed pose of body parts should be captured by local visual
cues instead of global information. As shown in Fig. 1(b), we can
estimate the rotation status of those visible body joints only based
on local visual cues, while the information from other body joints
and background regions would be irrelevant.

For the rotation-based pose representation, small rotation errors
accumulated along the kinematic chain could lead to large drift
of position at the leaf joint. Moreover, the rotation estimation is
error-prone for those occluded body parts since the perception of
local body parts is less reliable under occlusions. Hence, it is crucial
to utilize information from visible body parts and the prior about
the structure of human bodies. As shown in previous work [7–9],
leveraging the structural information at feature level is helpful to
obtainmore robust and accurate pose estimation results. However, it
is non-trivial to apply these feature refinement methods to our case
due to the weak correlation between rotation-based part poses. For
instance, the shoulder, elbow and wrist are three consecutive body

joints, and one can hardly infer the relative rotation of wrist w.r.t.
the elbow given the relative rotation of elbow w.r.t. the shoulder.
On the other hand, we observe that the 3D locations of body joints
have stronger correlations than the rotation of body joints. For
instance, the positions of shoulder, elbow and wrist are strongly
constrained by the length of the arm.

Based on the observations above, we propose a Decompose-
and-Aggregate Network (DaNet) for 3D human shape and pose
estimation. The DaNet utilizes UVI maps as the intermediate infor-
mation for the task. In the DaNet, we decompose the task into one
global and multiple local streams in consideration that the predic-
tion of different parameters requires different sizes of the receptive
field. In order to robustly predict the rotation of 3D body joints,
DaNet aggregates the message from local streams and refines the
rotation feature via an auxiliary position feature space to exploit
the spatial relationship between body parts, as shown in Fig. 1(c).

The main contributions in this work are summarized as follows.

• We introduce the UVI maps as the intermediate represen-
tation for the task of 3D human pose and shape estimation.
Such a densely semantic map contains essential information
for shape and pose estimation while eliminating interfer-
ence of other unrelated factors, which greatly facilitates the
learning of the mapping from image to body model.

• We decompose the reconstruction task into one global and
multiple local streams so that the prediction of different
aspects of the task can utilize different information sources.
This enables the network to provide global perception for
the camera and shape prediction and detailed perception for
pose prediction of each body part.

• We propose a position-aided rotation feature refinement
strategy to aggregate the message from local streams for
robust part pose prediction. The rotation features are gath-
ered and converted into a position feature space where the
features of body joints refine each other along the kinematic
chain. It is more efficient to exploit the spatial relationship
between body parts in the position feature space since the
correlations between position feature are stronger than that
in the original rotation feature space.

2 RELATEDWORK
Intermediate Representation for 3D Pose Recovery: The re-
covery of 3D human pose from a monocular image is challenging.
Common strategies use intermediate estimations as the proxy repre-
sentation to alleviate the difficulty. For 3D human pose estimation,
two-stage methods [6, 24, 30, 31, 33, 33, 39, 48] typically perform
2D keypoint estimations at first and then lift the 2D estimation to
3D pose. These methods can benefit from existing state-of-the-art
2D pose estimation algorithms. One-stage methods in literature
adopt volumetric representation [36], joint heat map [47] or 3D
orientation fields [29] as intermediate representations to facilitate
the learning task. Similarly, for 3D human shape and pose estima-
tion, silhouette [37], joint heatmap [37, 50], segmentation [34] and
3D orientation field [54] have also been exploited in literature as
proxy representations for estimating the 3D human shape and pose.
Though the aforementioned representations are helpful for the
task, detailed information contained within body parts is missing



in these coarse 2D representations, which becomes the bottleneck
for the subsequent prediction. Recently, DensePose [2] regresses
the UVI maps directly from images, which provides the dense cor-
respondence mapping from the image to the human body model.
However, the 3D pose cannot be directly retrieved from such a 2.5D
projection. In our work, we propose to adopt such a dense semantic
map as the intermediate representation for the task of 3D human
shape and pose estimation. To the best of our knowledge, we are
the first to investigate learning the human shape and pose from UVI
maps via CNN. In concurrent work, [22] obtains UVI predictions
using a pretrained network of DensePose [2], while [12] leverages
UVI predictions for refinement. Very recently, [58] uses the UV
position map as a representation of 3D human body. These efforts
are all different from ours.

3D Human Pose and Shape Estimation: Compared to the
problem of predicting sparse 3D joint position, the recovery of
human pose and shape from a monocular image has received much
less attention. Early pioneering works [11, 40] fit the body model
SCAPE [4] with the requirement of ground truth silhouettes or
manual initialization. Bogo et al. [5] introduce the optimization
method SMPLify and make the first attempt to automatically fit the
SMPL model to 2D body joints by leveraging multiple priors. Lass-
ner et al. [23] extend this method and improve the reconstruction
performance by incorporating the silhouette information in the
fitting procedure. These optimization based methods typically rely
on accurate 2D observations and the prior terms imposed on the
shape and pose parameters, making the procedure time-consuming
and sensitive to the initialization. Alternatively, there are several
attempts to employ the neural network for predicting the SMPL
parameters directly and learn the priors in a data-driven manner.
Tan et al. [46] develop an encoder-decoder based framework where
the decoder learns the SMPL-to-silhouette mapping from synthetic
data and the encoder learns the image-to-SMPL mapping with the
fixed decoder. Tung et al. [50] predict SMPL parameters from video
frames by integrating several re-projection losses against 2D key-
points, silhouettes and optical flow. Kanazawa et al. [19] present an
end-to-end framework to reconstruct the SMPLmodel directly from
images using a single CNN with an iterative regression module. To
alleviate the learning of highly non-linear mapping, 2D estimations
are exploited as proxy representation during the learning procedure.
For instance, Pavlakos et al. [37] propose to predict the shape and
pose parameters from the estimated silhouettes and joint heatmaps
respectively. Omran et al. [34] propose to use segmentation as
proxy representation and show it is more helpful to 3D shape/pose
estimation compared with the raw RGB images or silhouettes. In
addition to using 2D estimations, 3D volumetric representation is
also adopted in [16, 51] to facilitate the reconstruction of human
body shape. All aforementioned learning-based methods predicting
the pose in a global manner. In contrast, our DaNet predicts part
poses from multiple streams, hence the visual cues could be cap-
tured in a fine-grained manner. Additionally, existing approaches
for jointly estimating 3D pose and shape do not consider feature
refinement, while our DaNet uses the feature refinement for better
pose estimation under the rotation-based pose representation in
the SMPL model. We believe our framework could also be extended
to other expressive body models [18, 35].

Structured Feature Learning for Human Pose Estimation:
Leveraging the articulated structure information is crucial for ac-
curate human pose estimation. Early work utilized the spatial rela-
tionships between body joints through graphical models such as
pictorial structure [38] and mixture-of-parts [57]. Recent state-of-
the-art methods [7–9, 32, 49, 52, 55] employ convolution networks
for better feature extraction and incorporate the structured feature
learning in the architecture design. Among them, Chu et al. [8]
investigate learning relationship among body parts at the feature
level. They further extend their work in [9] to a CRF-CNN frame-
work to model structures in both output and hidden feature layers
within CNN. All these methods exploit the relationship between
the position features of body parts and these feature refinement
strategies are only validated on the position-based pose estimation
problem. Our approach is complementary to them by investigating
the refinement strategy for rotation features under the context of
rotation-based pose representation. We further show that the spa-
tial relationship between body parts is a good intermediate space for
refining the rotation features. Our approach aggregates the rotation
features into the position feature space, where the aforementioned
structural feature learning approaches could be easily applied.

Pose priors at output level. For 3D human pose, different types
of pose prior [1, 43, 56, 59, 60] are also employed as the constraint in
the learning procedure for a more geometrically reasonable predic-
tion. For instance, Akhter and Black [1] learn the pose prior in the
form of joint angle constraints. Sun et al. [43] design handcrafted
constraints such as limb-lengths and their proportions. Similar con-
straints are exploited in [59] under the weakly-supervised setting.
For the rotation-based pose representation in SMPL model, though
it inherently satisfies structure constraints such as limb proportions,
the pose prior is still essential for better reconstruction performance.
SMPLify [5] imposes several penalizing terms on predicted poses
to prevent unnatural results. Kanazawa et al. [19] introduce an
adversarial prior for guiding the prediction to be realistic. All these
methods consider the pose prior at the output level. In our work, we
will exploit the relationship at the feature level for better 3D pose
estimation in SMPL model.

3 SMPL MODEL AND UVI MAP
SMPLModel. The SkinnedMulti-Person Linear model (SMPL) [27]
is one of the widely used statistical human body models, which
represents the body mesh with two sets of parameters, i.e. the
shape and pose parameters. The shape indicates the model’s height,
weight and limb proportionswhile the pose indicates how themodel
deforms with the rotated skeleton joints. Such decomposition of
shape and pose makes it convenient for algorithms to focus on one
of these two factors independently. In the SMPL model, the shape
parameters β ∈ R10 denotes the coefficients of the PCA basis of
body shape. The pose parameters θ ∈ R3K denotes the axis-angle
representations of the relative rotation of K skeleton joints with
respect to their parents in the kinematic tree, where K = 23 + 1
in the SMPL model, including the root joint. Given the pose and
shape parameters, the model deforms accordingly and generates
a triangulated mesh with N = 6890 verticesM(θ , β) ∈ R3×N . The
deformation process M(θ , β) is differentiable with respect to the
pose θ and shape β , which means that the SMPL model could be
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Figure 3: Overview of the proposed Decompose-and-aggregate Network (DaNet).

integrated within a neural network as a typical layer without any
learnable weights.

UVI Map. Reconstructing the 3D object model from a monocu-
lar image is ambiguous, but there’s a determinate correspondence
between pixels on 2D image and vertexes on 3D surface. Such cor-
respondence could be represented in the form of UV map, which is
an image with each foreground pixel containing the UV coordinate
values. In this way, the pixels on the foreground could be projected
back to vertexes on the template mesh according to a predefined
bijective mapping between the 3D surface space and the 2D UV
space. For the human body model, the correspondence could have
finer granularity by introducing the index I of the body parts [2, 3],
which results in the UVI representation. In each body part, the
UV space is independent so that the representation could be more
fine-grained. Currently, the only dataset providing UVI annotations
is the DensePose-COCO [2] dataset, which is an extended version
of 2D human pose dataset.

Preparation of UVI map for 3D human pose dataset. Cur-
rently, there is no 3D human pose dataset providing UVI annota-
tions. In this work, for those datasets providing SMPL parameters
with human images, we augment their annotations by adding the
corresponding ground-truth UVI maps. Specifically, given images
and the corresponding camera and SMPL parameters, the ground-
truth UVI maps could be obtained by using existing rendering
algorithms such as [20, 28]. For each face in the triangulated mesh,
the texture value used for rendering is a triplet vector (u,v, i) denot-
ing the correspondingU , V and I values. The UVI mapping to the
SMPL model adopts the same protocol provided in DensePose [2].

4 METHODOLOGY
As illustrated in Fig. 3, our DaNet decomposes the prediction task
into a global stream for the camera and shape prediction and mul-
tiple local streams for part pose prediction. The overall pipeline
involves two consecutive stages, where the UVI maps are firstly
estimated from the fully convolution network and then taken as
inputs for subsequent parameter prediction.

In the first stage, the UVI maps are estimated from global and
local perspectives in consideration of the different sizes of the
receptive fields required by the prediction of different parameters.

In the second stage, the global and local UVI maps are used for
separate tasks. The global UVI maps are used for extracting global
features, which are directly used to predict camera and body shape.

The partial UVI maps are used for extracting the rotation features,
which are further refined and then used to predict part poses.

Overall, our objective function is the combination of three ob-
jectives:

L = Linter + Ltarдet + Lr ef ine , (1)
where Linter is the objective for estimating the intermediate rep-
resentation (Sec. 4.1), Ltarдet is the objective for predicting the
camera and SMPL parameters (Sec. 4.2), Lr ef ine is the objective
involving in the feature refinement procedure (Sec. 4.3). In the
following subsections, we will present the technical details and
rationale of our method.

4.1 Global and Partial UVI Estimation
The first stage in our method aims to estimate corresponding UVI
maps from input images for subsequent prediction tasks. Specifi-
cally, a fully convolutional network is employed to produce K + 1
sets of UVI maps, including one set of global UVI maps and K sets
of partial UVI maps for the corresponding K body parts. The global
UVI maps are aligned with the original image through up-sampling,
while the partial UVI maps center around the body joints. The
feature maps outputted from the last layer of the FCN would be
shared by the estimation tasks of both global and partial UVI maps.
The estimation of the global UVI maps is quite straightforward
since they could be obtained by simply feeding these feature maps
into a convolutional layer. For the estimation of each set of partial
UVI maps, the affine invariant RoI pooling would be first applied
on these feature maps to extract an appropriate sub-region, which
results in partial feature maps. Then, the K sets of partial UVI maps
would be estimated independently from the resulting K sets of
partial feature maps. Now, we will give details about the proposed
affine invariant RoI pooling.

Affine Invariant RoI Pooling. Spatial alignment or normal-
ization strategies are widely employed to reduce variations for
down-stream tasks such as face recognition [45, 53] and human
pose estimation [10, 13, 41]. In our approach, a similar mechanism
is proposed for better perception of part poses.

For the pose parameters in the SMPL model, they represent the
relative rotation of each body joint with respect to its parent in the
kinematic tree. Hence, the perception of part poses should also be
invariant to the global scale, translation and rotation. Moreover, the
ideal scale factor for the perception of part pose should vary from
one part to another since the proportions of body parts are different.



To this end, we introduce the affine invariant RoI pooling for partial
UVI estimation. Particularly, for each body part, a sub-region of
the feature maps are extracted and spatially transformed to a fixed
resolution for subsequent partial UVI map estimation and part pose
prediction.

The affine transformation parameters, i.e. scale, translation and
rotation, are calculated individually for each sub-region (RoI), in
order that the partial UVI maps could cover two connected bones,
center around corresponding body parts, and be rotated such that
the one of the two bones consistently has the same orientation.
Such a strategy serves as an attention for each body part such
that the perception of part pose is adaptable to spatial variations
caused by global scales and orientations. In comparison with the
Spatial Transformer Networks (STNs) [17], the pooling process in
our network is learned under an explicit supervision manner.

As illustrated in Fig. 4, the transformation parameters used
for spatial transformation of each RoI are calculated from the 2D
joint positions. Specifically, 2D joint heatmaps are estimated along
with the global UVI maps in a multi-task learning manner, and
the 2D joint positions are retrieved from heatmaps using the soft-
argmax [44] operation. Without loss of generality, let jk denote
the position of the k-th body joint, and let functions p(k) and c(k)
return the index of the parent and child joint for the k-th body joint
respectively. Then, for the k-th set of partial UVI maps, the center
ck , scale sk and rotation angle rk used for spatial transformation
could be calculated from jp(k ), jk and jc(k ), i.e. the positions of the
k-th body joint itself and its parent and child joints. Specifically,
the center ck is the positions of the target joint. The scale sk is
proportional to the maximum lengths of adjacent bones. The rota-
tion angle rk is calculated according to the orientation of the bone
pointing from jp(k) to jk . These transformation parameters can be
formulated as

ck = jk ,

sk = αk max
(jp(k ) − jk


2
,
jk − jc(k )


2

)
+ βk ,

rk = arccos

(
jp(k ) − jk

)
· e⊥jp(k ) − jk


2

,

(2)

where αk and βk are two constants, e⊥ denotes the unit vector
pointing the vertical downward direction. After obtaining these pa-
rameters, the feature maps extracted from the last layer of fully con-
volutional network are spatially transformed to a fixed resolution
and use to estimate the partial UVI maps, where the corresponding
ground-truth partial UVI maps are extracted from the ground-truth
global UVI maps using the same pooling process. In our experi-
ments, the scale and rotation adjustments are only applied to those
visible limb joints in consideration that the localization of torso and
hidden joints are relatively unreliable.

Loss Functions. A classification loss and several regression
losses are involved in the training of this stage. For both global
and partial UVI maps, the loss is calculated in the same manner
and denoted as Luvi . Specifically, a classification loss is imposed
on the index I channels of UVI maps, where the K + 1-way cross-
entropy loss is employed to classify a pixel belonging to either
background or one among the K body parts. For theUV channels
of UVI maps, an L1 based regression loss is adopted, and is only

Transformation 
Parameters 

2D Joint Position 
Spatial Transformer

Image Feature Maps
UVI Maps 

(Ground-truth)

Partial Feature Maps Partial UVI Maps 
(Ground-truth)

Image of Body Part

Figure 4: Illustration of the affine invariant RoI pooling.

taken into account for those pixels on the foreground. For the 2D
joint heatmaps and 2D joint positions estimated for RoI pooling, an
L1 based regression loss is adopted and denoted as Lroi . Overall,
the objective in the UVI estimation stage involves two main losses
and is denoted as

Linter = λuviLuvi + λroiLroi . (3)

4.2 Camera, Shape and Pose Prediction
After obtaining the global and partial UVI maps, the camera and
shape parameters would be predicted in the global stream, while
pose parameters would be predicted in the local streams.

The global stream consists of a ResNet [14] as the backbone
network and a fully connection layer added at the end with 13
outputs, corresponding to the camera scale s ∈ R, translation t ∈ R2
and the shape parameters β ∈ R10. In the local stream, a tailored
ResNet acts as the backbone network shared by all body parts
and is followed by K residual layers for rotation feature extraction
individually. For the k-th body part, the extracted rotation features
would be refined (see Sec. 4.3) and then used to predict the rotation
matrix Rk ∈ R3×3 via a fully connection layer. Here, we follow
previous work [34, 37] to predict the rotation matrix representation
of the pose parameters θ rather than the axis-angle representation
defined in the SMPL model. An L1 loss is imposed on the predicted
camera, shape and pose parameter, and we denote it as Lsmpl .

Following previous work [19, 34, 37], we also add additional
constraint and regression objective for better performance. For the
predicted rotation matrix, it is necessary to make it lie on the mani-
fold of rotation matrices. In our method, we impose an orthogonal
constraint loss on the predicted rotation matrix to guarantee its
orthogonality. The orthogonal constraint loss for predicted rotation
matrices {Rk }Kk=1 is denoted as Lor th and could be written as

Lor th =

K∑
k=1

RkRTk − I

2
. (4)

Given the predicted SMPL parameters, the performance could be
further improved by adding supervision explicitly on the resulting
modelM(θ , β). Specifically, we use three L1 based loss functions to
measure the difference between the ground-truth position and the
predicted one, and the corresponding losses are denoted as Lver t
for vertexes on 3D mesh, L3Dkp for sparse 3D human keypoints



and Lr eproj for the reprojected 2D human keypoints respectively.
For the sparse 3D human keypoints, the predicted position could be
obtained by a pre-trained linear regressor to map the mesh vertices
to 3D human keypoints defined in human pose datasets. Overall,
the objective in this prediction stage involves multiple losses and
is denoted as

Ltarдet = λsmplLsmpl + λor thLor th

+ λpoint
(
Lver t + L3Dkp + Lr eproj

)
.

(5)

4.3 Rotation Feature Refinement
In our approach, a position-aided rotation feature refinement strat-
egy is proposed to exploit spatial relationships among body parts.
As illustrated in Fig. 5, the rotation refinement procedure includes
three consecutive steps, namely rotation feature to position feature
mapping, position feature refinement, and refined feature aggre-
gation. Specifically, the rotation features are first aggregated and
converted to the position feature space where the feature refine-
ment is performed. After that, the rotation feature refinement is
accomplished by aggregating the messages from the refined posi-
tion features.

Step 1: rotation feature to position feature mapping. The
rotation features extracted independently from partial UVI maps
are viewed as sequential data along the kinematic chain. This is
inspired by the fact that the human could act in a recurrent manner
according to the kinematic tree. Given the position of a body joint,
the position of its child joint can be calculated according to the
relative rotation and the bone length. At the feature level, such
mapping is learned by the bilinear unit [30]. Formally, let {xk }Kk=1
denote the rotation features extracted from K sets of partial UVI
maps. After accumulating the information from rotation features
according to the kinematic tree, the position features of all joint are
generated, which are denoted as {vk }Kk=1. For the k-th body joint,
a bilinear unit learns the mapping function fk (·) such that it takes
the rotation feature xp(k ) and position featurevp(k ) as input and
output the position featurevk , i.e.

vk = fk (xp(k ),vp(k )). (6)

The position feature of the root body joint is initialized as its rota-
tion feature.

Step 2: position feature refinement. Since there is strong cor-
relation of the spatial relationship among body joints belonging
to a kinematic chain, utilizing such rich information could effec-
tively improve features learned at each joint. Towards this goal, an
LSTM-based feature refinement scheme is utilized to pass spatial in-
formation between joints along the kinematic chain. Specifically, let
Ci denote the set containing the indices of the body joints belong-
ing to the i-th chain. The position features {vk }k ∈Ci are viewed
as sequential data. A bi-directional LSTM takes them as input and
then outputs the refined features {v̂k }k ∈Ci , where v̂k is the con-
catenated features for the k-th body joint refined from forward
and backward directions. The refined position features v̂k are then
used to predict the corresponding 3D joint position. An L1 loss is
imposed on the predicted 3D joint position, which composes the
objective Lr ef ine involved in the refinement procedure.

Step 3: refined feature aggregation. Since the rotation and
position of body joints are two mutual representation of 3D human
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Figure 5: Illustration of the position-aided rotation feature
refinement.

pose, after the refinement of position feature, the rotation feature
can be refined accordingly. Specifically, for the k-th body joint, its
rotation features can be refined by aggregating messages from the
refined position feature of three consecutive body joints, i.e. the
joint itself and its parent and child joints. Likewise, the mapping
from position features to rotation features is also learned by the
bilinear unit. Formally, themapping functionдk (·) takes the features
of three consecutive body joints as input and outputs the features
in the rotation feature space. These features are added with original
rotation features in a residual manner, resulting in the refined
rotation features x̂k for the final prediction of part pose parameters,
i.e.

x̂k = xk + дk (v̂p(k), v̂k , v̂c(k )). (7)

5 EXPERIMENTS
5.1 Implementation Details
The FCN for UVI estimation in our framework adopts the archi-
tecture of HRNet-W48 [42], one of the most recent state-of-the-art
networks for dense prediction tasks. The FCN receives the 224×224
input and produces 56 × 56 feature maps for estimating the global
and local UVI maps, which have the same resolution of 56 × 56.
Two ResNet-18 [14] are employed as the backbone networks for
global and rotation feature extraction. The pyper-parameters λs are
selected in order to make values of objectives have similar scales.
αs and βs in Eq. 2 can be learned using ground-truth UVI maps as
inputs. During training, data augmentation techniques, including
rotation ±30°, color jittering (±30% channel-wise) and flipping, are
applied randomly to input images. The FCN is initialized with the
model pre-trained on the COCO keypoint detection dataset [25] for
2D human pose estimation, which is essential for robust 2D joint po-
sition localization and partial UVI estimation. The UVI estimation
task is first trained for 5k iterations before involving the parameter
prediction task. We adopt the ADAM [21] optimizer with an initial
learning rate of 1× 10−4 to train the model, and reduce the learning
rate to 1× 10−5 after 30k iterations. The training process converges
after around 60k iterations. During testing, due to the fundamental
depth-scale ambiguity, we follow previous work [19, 34] to center
the person within the image and perform scaling such that the
inputs have the same setting as training. For our DaNet, a single
forward to infer the shape and pose from an image takes about



170ms on a single TITAN Xp GPU. More details could be found in
the publicly available code.

5.2 Datasets and evaluation metrics
Human3.6M [15] is a large-scale dataset which consists of 3.6
millions of video frames captured in the controlled environment,
and currently the most commonly used benchmark dataset for 3D
human pose estimation. Kanazawa et al. [19] generated the ground
truth SMPL parameters by applying MoSH [26] to the sparse 3D
MoCap marker data. Following the common protocols [19, 36, 37],
we use five subjects (S1, S5, S6, S7, S8) for training and two subjects
(S9, S11) for evaluation. We also down-sample the original videos
from 50fps to 10fps to remove redundant frames, resulting in 312,188
frames for training and 26,859 frames for testing. For evaluation, the
Mean Per Joint Position Error (MPJPE) and the MPJPE after rigid
alignment of the prediction with ground truth using Procrustes
Analysis (MPJPE-PA) are used as the evaluation metrics.

UP-3D [23] is a collection dataset of existing 2D human pose
datasets, containing 5703 images for training, 1423 images for valida-
tion, and 1389 images for testing. The SMPL parameter annotations
of these real-world images are augmented in a semi-automatic way
by using an extended version of SMPLify [23]. Following previous
work [37], we evaluate the reconstruction performance using the
mean per-vertex error between the predicted and ground truth
body mesh.

5.3 Comparison with state-of-the-art methods
For Human3.6M, we evaluate the 3D human pose estimation perfor-
mance for quantitative comparison. Table 1 reports the comparison
results with previous methods that output more than sparse 3D key-
point position. Among them, HMR [19] adopts a single CNN and an
iterative regression module to produce all parameters. Pavlakos et
al. [37] decompose the shape and pose prediction tasks, while their
pose parameters are predicted from 2D joints positions. NBF [34]
adopts segmentation as the intermediate representation and learns
all parameters from it. CMR [22] directly regresses 3D shapes with a
graph-based convolutional network. All these methods except [12]
estimate pose parameters through a single stream and our method
outperforms them significantly. Concurrent work [12] predicts pose
parameters using a part-based model and has similar results with
ours. Example results of the proposed method on Human3.6M are
shown in Fig. 6. Benefit from the decomposition design, our DaNet
could capture more detailed part poses and produce accurate recon-
struction results.

We further evaluate the reconstruction performance of ourmethod
on the UP-3D dataset. We report quantitative evaluation on the
per-vertex error of the reconstructed mesh of our method in Table 2.
In comparison with previous methods, our method outperforms
them across all subsets of UP-3D by a large margin. As our closest
competitor, BodyNet [51] uses both 2D and 3D estimation as the
intermediate representation, which is much more time-consuming
than ours. Example results of our method on UP-3D are shown in
Fig. 7. It can be seen that our DaNet could produce satisfactory
results under challenging scenarios, which could be attributed to
the proposed aggregation design for rotation feature refinement.

Table 1: Quantitative comparison on Human3.6M.

Method MPJPE MPJPE-PA

Zhou et al. [60] 107.3 -
Tung et al. [50] - 98.4
SMPLify [5] - 82.3
SMPLify++ [23] - 80.7
Pavlakos et al. [37] - 75.9
HMR [19] 88 56.8
NBF [34] - 59.9
Xiang et al. [54] 65.6 -
CMR [22] - 50.1
HoloPose [12] 64.3 50.6
DaNet 61.5 48.6

Table 2: Quantitative comparison on UP-3D.

Method LSP MPII FashionPose Full

SMPLify++ [23] 174.4 184.3 108 169.8
Pavlakos et al. [37] 127.8 110.0 106.5 117.7
BodyNet [51] 102.5 - - -
DaNet 90.4 83.0 61.8 83.7

Table 3: Validation of the UVI intermediate representation.

Method MPJPE MPJPE-PA

ConvFeat 80.4 58.9
Segmentation 75.1 57.5
UVI 73.3 56.6

5.4 Ablation study
To evaluate the efficacy of the key components proposed in our
method, we conduct ablation experiments on Human3.6M under
various settings.

Intermediate Representation. The UVI map acts as a bridge
between pixels on 2D images and vertexes on 3D meshes and facili-
tates the learning task of the network. To validate its effectiveness,
we use alternative representations as input for the subsequent pa-
rameter prediction. For experiments in this part, we remove the
local stream in our method, and use only the global stream to
predict all parameters. In ablation approaches, the UVI maps are
replaced by the feature maps outputted form the last layer of the
FCN or the part segmentation (Index channels of UVI maps). As ob-
served from Table 3, the approach using the UVI maps outperforms
other ablation approaches using feature maps or segmentation as
intermediate representations. In our experiment, we found that the
approach using feature maps is more prone to overfitting to the
training set.

Decomposed Perception.We conduct experiments to validate
the effectiveness of the decomposed perception. Performances of
the approaches adopting one-stream (Global) and multiple streams
(Global+Local) are reported in Table 4. For fair comparison, the
one-stream approach adopts ResNet50 [14] for parameter predic-
tion such that their model sizes are comparable. As can be seen,
using multiple streams brings a significant improvement over the
approach using one stream.

In our affine invariant RoI pooling mechanism, the scale and
rotation are adaptable to spatial variations caused by global scales
and orientation, which contributes more stable perception of local



Figure 6: Example results on the Human3.6M dataset.

Figure 7: Example results on the UP-3D dataset.

visual cues for part pose prediction. To validate this claim, we fix
either the scale or the rotation in the pooling mechanism. Specifi-
cally, for all body parts, the scales {sk }Kk=1 are fixed as 0.3 which
accounts for around half of the body height, while the rotations
{rk }

K
k=1 are simply fixed as 0. As can be seen from the 3-rd and

4-th row in Table 4, fixing either the scale or the rotation degrades
the performance.

Table 4: Comparison of different perception strategies.

Method MPJPE MPJPE-PA

Global 73.3 56.6
Global+Local 65.6 52.2
Global+Local (fixed scale) 66.4 52.7
Global+Local (fixed rotation) 66.2 52.8

Table 5: Comparison of different feature refinement strate-
gies.

Method MPJPE MPJPE-PA

Baseline (w/o Refinement) 65.6 52.2
Direct 64.4 50.5
Position-aided 61.5 48.6

Position-aided Rotation Feature Refinement. The feature
refinement is essential for better pose estimation. A straight-forward
strategy to refine the feature would be conducting the refinement
between the rotation features directly. In this strategy, the rotation
features are fed to bi-LSTM for feature refinement and then used to
predict the part poses. We report results of the approach using such
a strategy in Table 5 and make a comparison to the proposed one.
As can be seen, direct refinement of rotation features brings much

less improvement. The reason is that the correlation between rota-
tion features is weak, and the message from the adjacent rotation
feature is generally irrelevant to refine the current rotation feature.
Our aggregation strategy builds an auxiliary position feature space
for feature refinement, making it much more efficient than that in
the original rotation feature space.

6 CONCLUSION
In this work, we propose a Decompose-and-aggregate Network
(DaNet) for 3D human shape and pose estimation. First, the UVI
maps are adopted as the intermediate representation to facilitate
the learning of image-to-model mapping. The reconstruction task
is decomposed into one global and multiple local streams so that
the network could provide global perception for the camera and
shape prediction and detailed perception for pose prediction of each
body part. The affine invariant RoI pooling mechanism is further
introduced for a more fine-grained and stable perception of the part
poses. Lastly, a position-aided rotation feature refinement strategy
is proposed for aggregating messages from body parts to enhance
the robustness of pose prediction. It is more efficient to exploit the
spatial relationship between body parts in the position feature space
since the correlations between position features are stronger than
that in the original rotation feature space. The decomposition and
aggregation designs contribute to the accurate and robust human
shape and pose estimation performance of our method.
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